
ISO/IEC JTC 1/SC 29

Date:

ISO/IEC 14496-3:/Amd.1:1999(E)

ISO/IEC JTC 1/SC 29/WG 11

Secretariat:

Information technology – Coding of audio-visual objects – Part 3: Audio

Document type: International Standard
Document subtype: Amendment
Document stage: (60) Publication
Document language: E

 –

II

Contents

1 Scope ... 2

1.1 Overview of MPEG-4 Audio Amd 1.. 2

1.2 New Concepts in MPEG-4 Audio Amd 1... 2

1.3 MPEG-4 Audio Amd 1 Capabilities.. 4

1.3.1 Overview of capabilities ... 4

1.3.2 Error robustness... 5

1.3.3 Low delay... 6

1.3.4 Back channel... 6

1.3.5 Fine granule Audio ... 6

1.3.6 HILN : Harmonic and Individual Lines plus Noise (parametric audio coding) 6

1.3.7 Silence compression for CELP.. 6

1.3.8 Extension of HVXC ... 7

2 Normative references ... 7

3 Terms and definitions... 7

4 Symbols and abbreviations ... 7

5 Technical overview ... 7

5.1 Extended MPEG-4 Audio Object Types .. 7

5.1.1 Audio Object Type Definition .. 7

5.1.2 Description .. 9

5.2 Audio Profiles and Levels .. 11

5.2.1 Profiles... 11

5.2.2 Complexity units ... 11

5.2.3 Level within the Profiles... 12

6 Extension to interface to MPEG-4 System ... 13

6.1 Introduction ... 13

6.2 Extension to Syntax.. 13

6.2.1 Audio DecoderSpecificInfo .. 13

6.2.2 Payloads .. 15

6.3 Semantics .. 15

III

6.3.1 AudioObjectType .. 15

6.3.2 SamplingFrequency ... 15

6.3.3 SamplingFrequencyIndex .. 15

6.3.4 channelConfiguration... 15

6.3.5 epToolUsed ... 15

6.3.6 GASpecificConfig ... 15

6.4 Back channel... 15

6.4.1 Introduction... 15

6.4.2 Syntax .. 16

6.4.3 General information.. 16

6.5 MPEG-4 Audio Transport Stream.. 17

7 Parametric audio coding (HILN) .. 17

7.1 Overview of the tools ... 17

7.2 Terms and definitions .. 18

7.3 Bitstream syntax... 18

7.3.1 Decoder configuration (ParametricSpecificConfig) .. 18

7.3.2 Bitstream Frame (alPduPayload) .. 21

7.4 Bitstream semantics... 35

7.4.1 Decoder Configuration (ParametricSpecificConfig) ... 35

7.4.2 Bitstream Frame (alPduPayload) .. 35

7.5 Parametric decoder tools... 36

7.5.1 HILN decoder tools... 36

7.5.2 Integrated parametric coder .. 52

8 Extension to General Audio Coding ... 53

8.1 Decoder Configuration (GASpecificConfig)... 53

8.1.1 Syntax .. 53

8.1.2 Semantics .. 54

8.2 Fine Granule Audio... 54

8.2.1 Overview of tools.. 54

8.2.2 bitstream syntax ... 54

8.2.3 General information.. 59

8.2.4 Tool Descriptions ... 80

IV

8.3 Low delay coding mode ... 99

8.3.1 Introduction ... 99

8.3.2 Syntax .. 101

8.3.3 General information.. 103

8.3.4 Coder description ... 103

8.4 AAC Error resilience... 107

8.4.1 Overview of tools .. 107

8.4.2 Bitstream payload... 108

8.4.3 Tool descriptions .. 111

9 Error protection... 124

9.1 Overview of the tools.. 124

9.2 Syntax .. 126

9.2.1 Error protection Specific Configuration ... 126

9.2.2 Error protection bitstream payloads... 126

9.3 General information.. 128

9.3.1 Definitions ... 128

9.4 Tool description .. 130

9.4.1 Out of band information... 130

9.4.2 In band information .. 131

9.4.3 Concatenation functionality .. 132

9.4.4 Cyclic Redundancy Code... 132

9.4.5 Systematic Rate-Compatible Punctured Convolutional (SRCPC) codes.................................... 133

9.4.6 Shortened Reed-Solomon Codes.. 141

10 Error resilience bitstream reordering ... 144

10.1 Overview of the tools.. 144

10.2 CELP... 144

10.2.1 Syntax .. 145

10.2.2 General information.. 152

10.2.3 Tool description .. 152

10.3 HVXC .. 152

10.3.1 Syntax .. 152

10.3.2 General information.. 167

V

10.3.3 Tool description.. 167

10.4 TwinVQ... 167

10.4.1 Syntax .. 167

10.4.2 General information.. 171

10.4.3 Tool description.. 171

10.5 AAC .. 171

10.5.1 Syntax .. 171

10.5.2 General Information.. 172

10.5.3 Tool Description ... 173

10.5.4 Tables... 174

10.5.5 Figures... 176

11 Silence Compression Tool... 176

11.1 Overview of the silence compression tool... 176

11.2 Definitions ... 177

11.3 Specifications of the silence compression tool .. 177

11.3.1 Transmission Payload.. 177

11.3.2 Bitrates of the silence compression tool ... 178

11.3.3 Algorithmic delay of the silence compression tool .. 178

11.4 Syntax .. 178

11.4.1 Bitstream syntax... 179

11.4.2 Bitstream semantics... 181

11.5 CNG module .. 182

11.5.1 Definitions ... 182

11.5.2 LSP decoder .. 183

11.5.3 LSP smoother.. 183

11.5.4 LSP interpolation and LSP-LPC conversion.. 184

11.5.5 RMS Decoder... 184

11.5.6 RMS Smoother .. 184

11.5.7 CNG excitation generation... 184

11.5.8 LP Synthesis filter... 186

11.5.9 Memory update ... 186

12 Extension of HVXC variable rate mode .. 187

VI

12.1 Overview .. 187

12.2 Definitions ... 187

12.3 Syntax .. 187

12.3.1 Decoder configuration (ER HvxcSpecificConfig) .. 187

12.3.2 Bitstream frame (alPduPayload).. 188

12.4 Decoding process... 189

VII

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

VIII

Introduction

MPEG-4 version 2 is an amendment to MPEG-4 version 1. This document contains the description of bitstream and
decoder extractions related to new tools defined within MPEG-4 version 2. As long as nothing else is mentioned, the
description made in MPEG-4 version 1 is not changed but only extended.

2

Information technology – Coding of audio-visual objects – Part 3:
Audio
AMENDMENT 1 FPDAM: Audio extensions

1� Scope

1.1� Overview of MPEG-4 Audio Amd 1

ISO/IEC 14496-3 (MPEG-4 Audio) is a new kind of audio standard that integrates many different types of audio coding:
natural sound with synthetic sound, low bitrate delivery with high-quality delivery, speech with music, complex soundtracks
with simple ones, and traditional content with interactive and virtual-reality content. By standardizing individually
sophisticated coding tools as well as a novel, flexible framework for audio synchronization, mixing, and downloaded post-
production, the developers of the MPEG-4 Audio standard have created new technology for a new, interactive world of
digital audio.

MPEG-4, unlike previous audio standards created by ISO/IEC and other groups, does not target a single application such
as real-time telephony or high-quality audio compression. Rather, MPEG-4 Audio is a standard that applies to every
application requiring the use of advanced sound compression, synthesis, manipulation, or playback. The subparts that
follow specify the state-of-the-art coding tools in several domains; however, MPEG-4 Audio is more than just the sum of its
parts. As the tools described here are integrated with the rest of the MPEG-4 standard, exciting new possibilities for
object-based audio coding, interactive presentation, dynamic soundtracks, and other sorts of new media, are enabled.

Since a single set of tools is used to cover the needs of a broad range of applications, interoperability is a natural feature of
systems that depend on the MPEG-4 Audio standard. A system that uses a particular coder—for example, a real-time
voice communication system making use of the MPEG-4 speech coding toolset—can easily share data and development
tools with other systems, even in different domains, that use the same tool—for example, a voicemail indexing and
retrieval system making use of MPEG-4 speech coding.

The following sections give a more detailed overview of the capabilities and functionalities provided with MPEG-4 Audio
version 2.

1.2� New Concepts in MPEG-4 Audio Amd 1

With this extension, new tools are added to the MPEG-4 Standard, while none of the existing tools of Version 1 is
replaced. Version 2 is therefore fully backward compatible to Version 1.

In the area of Audio, new tools are added in MPEG-4 Version 2 to provide the following new functionalities:

• %RROR�2OBUSTNESS

The Error Robustness tools provide improved performance on error-prone transmission channels. There are two classes
of tools:

Improved Error Robustness for AAC is provided by a set of tools belonging to the first class of Error Resilience tools.
These tools reduce the perceived deterioration of the decoded audio signal that is caused by corrupted bits in the
bitstream. The following tools are provided to improve the error robustness for several parts of an AAC bitstream frame:

3

- Virtual CodeBook tool (VCB11)

- Reversible Variable Length Coding tool (RVLC)

- Huffman Codeword Reordering tool (HCR)

Improved Error Robustness capabilities for all coding tools is provided by the error resilience bitstream reordering tool.
This tool allows for the application of advanced channel coding techniques, that are adapted to the special needs of the
different coding tools. This tool is applicable to selected Version 1object types. For these object types, a new syntax
defined within this amendment to Version 1. All other newly defined object types do only exist in this Error Robustness
syntax.

The Error Protection tool (EP tool) provides Unequal Error Protection (UEP) for MPEG-4 Audio and belongs to the second
class of Error Robustness tools. UEP is an efficient method to improve the error robustness of source coding schemes. It
is used by various speech and audio coding systems operating over error-prone channels such as mobile telephone
networks or Digital Audio Broadcasting (DAB). The bits of the coded signal representation are first grouped into different
classes according to their error sensitivity. Then error protection is individually applied to the different classes, giving
better protection to more sensitive bits.

• ,OW
$ELAY�!UDIO�#ODING

The MPEG-4 General Audio Coder provides very efficient coding of general audio signals at low bitrates. However it has
an algorithmic delay of up to several 100ms and is thus not well suited for applications requiring low coding delay, such as
real-time bi-directional communication. As an example, for the General Audio Coder operating at 24 kHz sampling rate
and 24 kbit/s this results in an algorithmic coding delay of about 110 ms plus up to additional 210 ms for the bit reservoir.
To enable coding of general audio signals with an algorithmic delay not exceeding 20 ms, MPEG-4 Version 2 specifies a
Low-Delay Audio Coder which is derived from MPEG-2/4 Advanced Audio Coding (AAC). It operates at up to 48 kHz
sampling rate and uses a frame length of 512 or 480 samples, compared to the 1024 or 960 samples used in standard
MPEG-2/4 AAC. Also the size of the window used in the analysis and synthesis filterbank is reduced by a factor of 2. No
block switching is used to avoid the ”look-ahead'' delay due to the block switching decision. To reduce pre-echo artefacts
in case of transient signals, window shape switching is provided instead. For non-transient parts of the signal a sine
window is used, while a so-called low overlap window is used in case of transient signals. Use of the bit reservoir is
minimized in the encoder in order to reach the desired target delay. As one extreme case, no bit reservoir is used at all.

• &INE�GRAIN�SCALABILITY

Bitrate scalability, also known as embedded coding, is a very desirable functionality. The General Audio Coder of Version
1 supports large step scalability where a base layer bitstream can be combined with one or more enhancement layer
bitstreams to utilise a higher bitrate and thus obtain a better audio quality. In a typical configuration, a 24 kbit/s base layer
and two 16 kbit/s enhancement layers could be used, permitting decoding at a total bitrate of 24 kbit/s (mono), 40 kbit/s
(stereo), and 56 kbit/s (stereo). Due to the side information carried in each layer, small bitrate enhancement layers are not
efficiently supported in Version 1. To address this problem and to provide efficient small step scalability for the General
Audio Coder, the Bit-Sliced Arithmetic Coding (BSAC) tool is available in Version 2. This tool is used in combination with
the AAC coding tools and replaces the noiseless coding of the quantised spectral data and the scalefactors. BSAC
provides scalability in steps of 1 kbit/s per audio channel, i.e. 2 kbit/s steps for a stereo signal. One base layer bitstream
and many small enhancement layer bitstreams are used. The base layer contains the general side information, specific
side information for the first layer and the audio data of the first layer. The enhancement streams contain only the specific
side information and audio data for the corresponding layer. To obtain fine step scalability, a bit-slicing scheme is applied
to the quantised spectral data. First the quantised spectral values are grouped into frequency bands. Each of these
groups contains the quantised spectral values in their binary representation. Then the bits of a group are processed in
slices according to their significance. Thus first all most significant bits (MSB) of the quantised values in a group are
processed, etc. These bit-slices are then encoded using an arithmetic coding scheme to obtain entropy coding with
minimal redundancy. Various arithmetic coding models are provided to cover the different statistics of the bit-slices. The
scheme used to assign the bit-slices of the different frequency bands to the enhancement layer is constructed in a special
way. This ensures that, with an increasing number of enhancement layers utilised by the decoder, quantized spectral data
is refined by providing more of the less significant bits. But also the bandwidth is increased by providing bit-slices of the
spectral data in higher frequency bands.

• 0ARAMETRIC�!UDIO�#ODING

4

The Parametric Audio Coding tools combine very low bitrate coding of general audio signals with the possibility of
modifying the playback speed or pitch during decoding without the need for an effects processing unit. In combination
with the speech and audio coding tools of Version 1, improved overall coding efficiency is expected for applications of
object based coding allowing selection and/or switching between different coding techniques.

Parametric Audio Coding uses the Harmonic and Individual Line plus Noise (HILN) technique to code general audio
signals at bitrates of 4 kbit/s and above using a parametric representation of the audio signal. The basic idea of this
technique is to decompose the input signal into audio objects which are described by appropriate source models and
represented by model parameters. Object models for sinusoids, harmonic tones, and noise are utilised in the HILN coder.

This approach allows to introduce a more advanced source model than just assuming a stationary signal for the duration
of a frame, which motivates the spectral decomposition used e.g. in the MPEG-4 General Audio Coder. As known from
speech coding, where specialised source models based on the speech generation process in the human vocal tract are
applied, advanced source models can be advantageous in particular for very low bitrate coding schemes.

Due to the very low target bitrates, only the parameters for a small number of objects can be transmitted. Therefore a
perception model is employed to select those objects that are most important for the perceptual quality of the signal.

In HILN, the frequency and amplitude parameters are quantised according to the ‘ ‘ just noticeable differences’’ known
from psychoacoustics. The spectral envelope of the noise and the harmonic tone is described using LPC modeling as
known from speech coding. Correlation between the parameters of one frame and between consecutive frames is
exploited by parameter prediction. The quantised parameters are finally entropy coded and multiplexed to form a
bitstream.

A very interesting property of this parametric coding scheme arises from the fact that the signal is described in terms of
frequency and amplitude parameters. This signal representation permits speed and pitch change functionality by simple
parameter modification in the decoder. The HILN Parametric Audio Coder can be combined with MPEG-4 Parametric
Speech Coder (HVXC) to form an integrated parametric coder covering a wider range of signals and bitrates. This
integrated supports speed and pitch change. Using a speech/music classification tool in the encoder, it is possible to
automatically select the HVXC for speech signals and the HILN for music signals. Such automatic HVXC/HILN switching
was successfully demonstrated and the classification tool is described in the informative Annex of the Version 2 standard.

• #%,0�3ILENCE�#OMPRESSION

The silence compression tool reduces the average bitrate thanks to a lower-bitrate compression for silence. In the
encoder, a voice activity detector is used to distinguish between regions with normal speech activity and those with silence
or background noise. During normal speech activity, the CELP coding as in Version 1 is used. Otherwise a Silence
Insertion Descriptor (SID) is transmitted at a lower bitrate. This SID enables a Comfort Noise Generator (CNG) in the
decoder. The amplitude and spectral shape of this comfort noise is specified by energy and LPC parameters similar as in
a normal CELP frame. These parameters are an optional part of the SID and thus can be updated as required.

• Extended HVXC

The variable bit-rate mode of 4.0 kbps maximum is additionaly supported in version2 HVXC. In the version1 HVXC,
variable bit-rate mode of 2.0 kbps maximum is supported as well as 2.0 and 4.0 kbps fixed bit-rate mode. In version2, the
operation of the variable bit-rate mode is extended to work with 4.0 kbps mode. In the variable bit-rate mode, non-speech
part is detected from unvoiced signals, and smaller number of bits are used for non-speech part to reduce the average bit-
rate. When the variable bit-rate mode of 4.0 kbps maximum is used, the average bit rate goes down to approximately 3.0
kbps with typical speech items. Other than 4.0 kbps variable bit-rate mode, the operation of HVXC in version2 is the
same as that in version1.

1.3� MPEG-4 Audio Amd 1 Capabilities

1.3.1� Overview of capabilities

MPEG-4 Audio version 2 provides the following new capabilities:

5

- error robustness (including error resilience as well as error protection)

- low delay audio coding

- back channel

- fine granule scalability

- parametric audio

- silence compression in CELP

- extended HVXC

Those new capabilities are discussed in more detail below.

1.3.2� Error robustness

1.3.2.1� Error resilience tools for AAC

Several tools are provided to increase the error resilience for AAC. These tools improve the perceptual audio quality of the
decoded audio signal in case of corrupted bitstreams, which may occur e. g. in the presence of noisy transmission
channels.

The Virtual CodeBooks tool (VCB11) extends the sectioning information of an AAC bitstream. This permits to detect
serious errors within the spectral data of an MPEG-4 AAC bitstream. Virtual codebooks are used to limit the largest
absolute value possible within a certain scalefactor band where escape values are. While referring to the same codes as
codebook 11, the sixteen virtual codebooks introduced by this tool provide sixteen different limitations of the spectral
values belonging to the corresponding section. Due to this, errors within spectral data resulting in spectral values
exceeding the indicated limit can be located and appropriately concealed.

 The Reversible Variable Length Coding tool (RVLC) replaces the Huffman and DPCM coding of the scalefactors in an
AAC bitstream. The RVLC uses symmetric codewords to enable both forward and backward decoding of the scalefactor
data. In order to have a starting point for backward decoding, the total number of bits of the RVLC part of the bitstream is
transmitted. Because of the DPCM coding of the scalefactors, also the value of the last scalefactor is transmitted to
enable backward DPCM decoding. Since not all nodes of the RVLC code tree are used as codewords, some error
detection is also possible.

 The Huffman codeword reordering (HCR) algorithm for AAC spectral data is based on the fact that some of the
codewords can be placed at known positions so that these codewords can be decoded independent of any error within
other codewords. Therefore, this algorithm avoids error propagation to those codewords, the so-called priority codewords
(PCW). To achieve this, segments of known length are defined and those codewords are placed at the beginning of these
segments. The remaining codewords (non-priority codewords, non-PCW) are filled into the gaps left by the PCWs using a
special algorithm that minimizes error propagation to the non-PCWs codewords. This reordering algorithm does not
increase the size of spectral data. Before applying the reordering algorithm itself, a pre-sorting process is applied to the
codewords. It sorts all codewords depending on their importance, i. e. it determines the PCWs.

1.3.2.2� Error protection

The EP tool provides unequal error protection. It receives several classes of bits from the audio coding tools, and then
applys forward error correction codes (FEC) and/or cyclic redundancy codes (CRC) for each class, according to its error
sensitivity.

The error protection tool (EP tool) provides the unequal error protection (UEP) capability to the ISO/IEC 14496-3 codecs.
Main features of this tool are:

6

 - providing a set of error correcting/detecting codes with wide and small-step scalability, in performance and in
redundancy

 - providing a generic and bandwidth-efficient error protection framework, which covers both fixed-length frame bitstreams
and variable-length frame bitstream

 - providing a UEP configuration control with low overhead

1.3.2.3� Error resilient bitstream reordering

Error resilient bitstream reordering allows the effective use of advanced channel coding techniques like unequal error
protection (UEP), that can be perfectly adapted to the needs of the different coding tools. The basic idea is to rearrange
the audio frame content depending on its error sensitivity in one or more instances belonging to different error sensitivity
categories (ESC). This rearangement works either data element-wise or even bit-wise. An error resilient bitstream frame is
build by concatenating these instances.

1.3.3� Low delay

The low delay coding functionality provides the ability to extend the usage of generic low bitrate audio coding to
applications requiring a very low delay of the encoding / decoding chain (e.g. full-duplex real-time communications). In
contrast to traditional low delay coders based on speech coding technology, the concept of this low delay coder is based
on general perceptual audio coding and is thus suitable for a wide range of audio signals. Specifically, it is derived closely
from the proven architecture of MPEG-2/4 Advanced Audio Coding (AAC). Furthermore, all capabilities for coding of 2
(stereo) or more sound channels (multi-channel) are available within the low delay coder as inherited from Advanced Audio
Coding.

1.3.4� Back channel

To allow for user on a remote side to dynamically control the streaming of the server, backchannel streams carrying user
interaction information are defined.

1.3.5� Fine granule Audio

BSAC provides fine grain scalability in steps of 1kbit/s per audio channel, i.e. 2kbit/s steps for a stereo signal. One base
layer bitstream and many small enhancement layer bitstreams are used. In order to implement the fine grain scalability
efficiently in MPEG-4 system, the fine grain audio data can be divided into the large-step layers and the large-step layers
are concatenated from the several sub-frames. And the configuration of the payload transmitted over Elementary
Stream(ES) can be changed dynamically depending on the environment such as the network traffic or the user interaction.
So, BSAC can allow for real-time adjustments to the quality of service.

In addition to fine grain scalablity, it can improve the quality of the audio signal which is decoded from the bitstreams
transmitted over error-prone channels such as mobile communication networks or Digital Audio Broadcasting (DAB)

1.3.6� HILN : Harmonic and Individual Lines plus Noise (parametric audio coding)

MPEG-4 parametric audio coding uses the HILN technique (Harmonic and Individual Line plus Noise) to code non-speech
signals like music at bit rates of 4 kbit/s and higher using a parametric representation of the audio signal. HILN allows
independent change of speed and pitch during decoding. Furthermore HILN can be combined with MPEG-4 parametric
speech coding (HVXC) to form an integrated parametric coder covering a wider range of signals and bit rates.

1.3.7� Silence compression for CELP

The silence compression tool comprises a Voice Activity Detection (VAD), a Discontinuous Transmission (DTX) and a
Comfort Noise Generator (CNG) modules. The tool encodes/decodes the input signal at a lower bitrate during the non-
active-voice (silence) frames. During the active-voice (speech) frames, MPEG-4 CELP encoding and decoding are used.

7

1.3.8� Extension of HVXC

The operation of 4.0kbps variable rate coding mode of the MPEG-4 parametric speech coder HVXC is described. In
version-1, variable bit rate mode based on 2kbps mode is already supported. Here extended operation of the variable bit-
rate mode with 4kbps maximum is provided which allows higher quality variable rate coding.

2� Normative references

ISO/IEC 11172-3:1993, Information Technology - Coding of moving pictures and associated audio for digital storage media
at up to about 1.5 Mbit/s, Part 3: Audio.

ISO/IEC 13818-1:1996, Information Technology – Generic coding of moving pictures and associated audio, Part 1:
System.

ISO/IEC 13818-3:1997, Information Technology – Generic coding of moving pictures and associated audio, Part 3: Audio.

ISO/IEC 14496-3:1999, Information Technology - Coding of Audiovisual Objects, Part 3: Audio.

ITU-T SG16ITU-T RECOMMENDATION H.223/ANNEX C MULTIPLEXING PROTOCOL FOR LOW BITRATE
MULTIMEDIA COMMUNICATION OVER HIGHLY ERROR_PRONE CHANNELS, April 1998.

3� Terms and definitions

RVLC – Reversible Variable Length Coding

virtual codebook – If several codebook values refer to one and the same physical codebook, these values are called
virtual codebooks.

4� Symbols and abbreviations

See ISO/IEC 14496-3 Subpart 1 Main.

5� Technical overview

5.1� Extended MPEG-4 Audio Object Types

5.1.1� Audio Object Type Definition

Table 5.1.1 Audio Object Type Definition

8

 Tools

Audio Object
Type

13
81

8-
7

m
ai

n

13
81

8-
7

LC

13
81

8-
7

S
S

R

P
N

S

LT
P

T
LS

S

T
w

in
 V

Q

C
E

LP

H
V

X
C

T
T

S
I

S
A

 to
ol

s

S
A

S
B

F

M
ID

I

B
S

A
C

H
IL

N

Lo
w

 D
el

ay
 A

A
C

H
V

X
C

 4
kb

s
V

R

S
ile

nc
e

C
om

pr
es

si
on

E
rr

or
 R

ob
us

t

G
A

 B
its

tr
ea

m
S

yn
ta

x
T

yp
e

H
ie

ra
rc

hy

O
bj

ec
t T

yp
e

ID

Null 0
AAC main X X ISO/IEC

13818-7
Style

contains
AAC LC

1

AAC LC X X ISO/IEC
13818-7
Style

2

AAC SSR X X ISO/IEC
13818-7
Style

3

AAC LTP X X X ISO/IEC
13818-7
Style

contains
AAC LC

4

(Reserved) 5
AAC Scalable X X X X Scalable 6
TwinVQ X X Scalable 7
CELP X 8
HVXC X 9
(Reserved) 10
(Reserved) 11
TTSI X 12
Main
synthetic

X X X contains
W/T &
Algor.
synthesis

13

Wavetable
synthesis

X X contains
General
MIDI

14

General MIDI X 15
Algorithmic
Synthesis
and Audio FX

X 16

ER AAC LC X X X Resilient 17
ER AAC SSR X X X Resilient ? 18
ER AAC LTP X X X X Scalable

Resilient
? 19

ER AAC
scaleable

X X X X Scalable
Resilient

20

ER TwinVQ X X Resilient 21
ER Fine
Granule
Audio

X X Scalable
Resilient

22

ER AAC LD X X X X Resilient 23
ER CELP X X X Resilient 24
ER HVXC X X X Resilient 25
ER HILN X X Resilient ? 26
ER
Parametric

X X X X Resilient 27

(Reserved) 28
(Reserved) 29
(Reserved) 30
(Reserved) 31

Notice: The error-robust tool is composed of error resilience and error protection. It is mandatory to equip the bit
parsing function for error protection. However, it is optional to have the error detection and correction function.

9

Considerations:

ER AAC LTP: no evidence to prove its error resilience so far.

ER AAC SSR: currently no Profile to support.

ER HILN: will be always used with ER HVXC.

5.1.2� Description

5.1.2.1� NULL Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.2� AAC-Main Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.3� AAC-Low Complexity (LC) Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.4� AAC-Scalable Sampling Rate (SSR) Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.5� AAC-Long Term Predictor (LTP) Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.6� AAC Scalable Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.7� TwinVQ Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.8� CELP Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.9� HVXC Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.10� TTSI Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.11� Main Synthetic Object

See ISO/IEC 14496-3 Subpart 1 Main.

10

5.1.2.12� Wavetable Synthesis Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.13� General MIDI Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.14� Algorithmic Synthesis and Audio FX Object

See ISO/IEC 14496-3 Subpart 1 Main.

5.1.2.15� Error Resilient (ER) AAC-Low Complexity (LC) Object

The Error Resilient (ER) MPEG-4 AAC Low Complexity object type is the counterpart to the MPEG-4 AAC Low Complexity
object, with additional error resilient functionality.

5.1.2.16� Error Resilient (EP) AAC- Scalable Sampling Rate (SSR) Object

The Error Resilient (ER) MPEG-4 AAC Scalable Sampling Rate object type is the counterpart to the MPEG-4 AAC
Scalable Sampling Rate object, with additional error resilient functionality.

5.1.2.17� Error Resilient (ER) AAC-Long Term Predictor (LTP) Object

The Error Resilient (ER) MPEG-4 AAC LTP object type is the counterpart to the MPEG-4 AAC LTP object, with additional
error resilient functionality.

5.1.2.18� Error Resilient (EP) AAC- Scaleable Object

The Error Resilient (ER) MPEG-4 AAC Scaleable object type is the counterpart to the MPEG-4 AAC Scaleable object, with
additional error resilient functionality.

5.1.2.19� Error Resilient (ER) TwinVQ Object

The Error Resilient (ER) TwinVQ object type is the counterpart to the MPEG-4 TwinVQ object, with additional error
resilient functionality.

5.1.2.20� Error Resilient (ER) Fine Granule Audio Object

ER Fine Granule Audio Object is supported by the fine grain scalablility tool (BSAC:Bit-Sliced Arithmetic Coding). It
provides error resilience as well as fine step scalability in the MPEG-4 General Audio (GA) coder. It is used in combination
with the AAC coding tools and replaces the noiseless coding and the bitstream formatting of MPEG-4 Version 1 GA coder
A large number of scalable layers are available, providing 1kbps/ch enhancement layer, i.e. 2kbps steps for a stereo
signal.

5.1.2.21� Error Resilient (ER) AAC-LD Object

The AAC LD object is supported by Low delay AAC coding tool. It also permits combination with PNS tool. AAC-LD Object
provides the ability to extend the usage of generic low bitrate audio coding to applications requiring a very low delay of the
encoding / decoding chain (e.g. full-duplex real-time communications

5.1.2.22� ER CELP Object

The ER CELP object is supported by silence compression and ER tools. It provides the ability to reduce the average
bitrate thanks to a lower-bitrate compression for silence.

5.1.2.23� ER HVXC Object

The ER HVXC object is supported by the parametric speech coding (HVXC) tools, which provide fixed bitrate modes (2.0-
4.0kbit/s) and variable bitrate modes (< 2.0kbit/s and < 4.0kbit/s) both in a scalable and a non-scalable scheme, and the

11

functionality of pitch and speed change. The syntax to be used with the EP-Tool, and the error concealment functionality
are supported for the use for error-prone channels. Only 8 kHz sampling rate and mono audio channel are supported.

5.1.2.24� ER HILN Object

The ER HILN object is supported by the parametric audio coding tools (HILN: Harmonic and Individual Lines plus Noise)
which provide coding of general audio signals at very low bit rates ranging from below 4 kbit/s to above 16 kbit/s. Bit rate
scalability and the functionality of speed and pitch change are available. The ER HILN object supports mono audio objects
at a wide range of sampling rates.

5.1.2.25� ER Parametric Object

The ER Parametric object is supported by the parametric audio coding and speech conding tools HILN and HVXC. This
integrated parametric coder combines the functionalities of the ER HILN and the ER HVXC objects.Audio Profiles and
Levels

5.2� Audio Profiles and Levels

5.2.1� Profiles

tbd (see Profiles under consideration document N2858)

Table 5.2.1

5.2.2� Complexity units

Complexity units are defined to give an approximation of the decoder complexity in terms of processing power and RAM
usage required for processing MPEG-4 Audio bitstreams in dependence of specific parameters.

The approximated processing power is given in „Processor Complexity Units“ (PCU), specified in integer numbers of
MOPS. The approximated RAM usage is given in „RAM Complexity Units“ (RCU), specified in (mostly) integer numbers of
kWords (1000 words). The RCU numbers do not include working buffers that can be shared between different objects
and/or channels.

The following table gives complexity estimates for the different object types:

12

Table 5.2.2 Complexity of Object Types

Object Type Parameters PCU (MOPS) RCU (kWords) Remarks

ER AAC LC Fs=48kHz 3 3 3)

ER AAC SSR Fs=48kHz 4 3 3)

ER AAC LTP Fs=48kHz 4 4 3)

ER AAC Scalable Fs=48kHz 5 4 3),4)

ER TwinVQ Fs=24kHz 2 3 3)

ER Fine Granule
Audio

Fs=48kHz 4 3 3)

ER AAC LD Fs=48kHz 4 3 3)

ER CELP Fs=8/16kHz 3 1

ER HVXC Fs=8kHz 2 1

Fs=8kHz, ns=40 5 2ER HILN

Fs=8kHz, ns=90 10 2

1), 2)

ER Parametric Fs=8kHz

Definitions:

• fs = sampling frequency

• rf = ratio of sampling rates

• ns = max. number of sinusoids to be synthesixed

Notes -

1) Parametric coder in HILN mode, for HVXC see MPEG-4 Version 1.

2) PCU and RCU proportional to sampling frequency

3) PCU proportional to sampling frequency

4) Includes core decoder

5.2.3� Level within the Profiles

tbd (see Profiles under consideration document N2858)

13

6� Extension to interface to MPEG-4 System

6.1� Introduction

The header streams are transported via MPEG-4 systems. These streams contain configuration information, which is
necessary for the decoding process and parsing of the raw data streams. However, an update is only necessary if there
are changes in the configuration.

The payloads contain all information varying on a frame to frame basis and therefore carry the actual audio information.

6.2� Extension to Syntax

6.2.1� Audio DecoderSpecificInfo

Table 6.2.1 Syntax of AudioSpecificConfig()

Syntax No. of bits Mnemonic
AudioSpecificConfig ()
{

AudioObjectType 5 bslbf
samplingFrequencyIndex 4 bslbf
if(samplingFrequencyIndex==0xf)

samplingFrequency 24 uimsbf
channelConfiguration 4 bslbf
if(AudioObjectType == 1 || AudioObjectType == 2 ||

AudioObjectType == 3 || AudioObjectType == 4 ||
AudioObjectType == 6 || AudioObjectType == 7)
GASpecificConfig()

if(AudioObjectType == 8)
CelpSpecificConfig()

if(AudioObjectType == 9)
HvxcSpecificConfig()

if(AudioObjectType == 12)
TTSSpecificConfig()

if(AudioObjectType == 13 || AudioObjectType == 14 ||
AudioObjectType == 15||AudioObjectType==16)
StructuredAudioSpecificConfig()

/* the following Objects are Amendment 1 Objects */
if(AudioObjectType == 17 || AudioObjectType == 18 ||

AudioObjectType == 19 || AudioObjectType == 20 ||
AudioObjectType == 21 || AudioObjectType == 22 ||
AudioObjectType == 23)
GASpecificConfig()

if(AudioObjectType == 24)
ErrorResilientCelpSpecificConfig()

if(AudioObjectType == 25)
ErrorResilientHvxcSpecificConfig()

if(AudioObjectType == 26 || AudioObjectType == 27)
ParametricSpecificConfig()

if(AudioObjectType == 17 || AudioObjectType == 18 ||
AudioObjectType == 19 || AudioObjectType == 20 ||
AudioObjectType == 21 || AudioObjectType == 22 ||
AudioObjectType == 23 || AudioObjectType == 24 ||
AudioObjectType == 25 || AudioObjectType == 26 ||
AudioObjectType == 27)
epToolUsed 1 bslbf

if(epToolUsed)
ErrorProtectionSpecificConfig()

14

}

6.2.1.1� HvxcSpecificConfig

Defined in ISO/IEC 14496-3 subpart 2.

6.2.1.2� CelpSpecificConfig

Defined in ISO/IEC 14496-3 subpart 3.

6.2.1.3� GASpecificConfig

See subclause 8.1.1

6.2.1.4� StructuredAudioSpecificConfig

Defined in ISO/IEC 14496-3 subpart 5.

6.2.1.5� TTSSpecificConfig

Defined in ISO/IEC 14496-3 subpart 6.

6.2.1.6� ParametricSpecificConfig

Defined in Subclause 7.3.1.

6.2.1.7� ErrorProtectionSpecificConfig

Defined in Chapter 9.

6.2.1.8� ErrorResilientCelpSpecificConfig

The decoder configuration information for the ER CELP object is transmitted in the DecoderConfigDescriptor() of the base
layer and the optional enhancement layer Elementary Stream.

Error Resilient CELP Base Layer -- Configuration

The CELP core in the unscalable mode or as the base layer in the scalable mode requires the following
ErrorResilientCelpSpecificConfig():

ErrorResilientCelpSpecificConfig () {
ER_SC_CelpHeader (samplingFrequencyIndex);

}

Error Resilient CELP Enhancement Layer -- Configuration

The CELP core is used for both bitrate and bandwidth scalable modes. In the bitrate scalable mode, the enhancement
layer requires no ErrorResilientCelpSpecificConfig(). In the bandwidth scalable mode, the enhancement layer has the
following ErrorResilientCelpSpecificConfig():

ErrorResilientCelpSpecificConfig() {
CelpBWSenhHeader(); /* Defined in ISO/IEC 14496-3 subpart 3.*/

}
6.2.1.9� ErrorResilientHvxcSpecificConfig

Defined in Subclause 12.3.

15

6.2.2� Payloads

For the NULL object the payload shall be 16 bit signed integer in the range from -32768 to +32767. The payloads for all
other audio object types are defined in the corresponding parts. These are the basic entities to be carried by the systems
transport layer. Note that for all natural audio coding schemes the output is scaled for a maximum of 32767/-32768.
However, the MPEG-4 System compositor expects a scaling.

The Elementary Stream payloads for the ER HILN and ER Parametric Audio Object Type are defined in Subclause 7.3.2.

The Elementary Stream payload for the ER CELP Object Type is defined in Subclause 11.4.

The Elementary Stream payload for the ER Fine Granule Audio Object Type is defined in Subclause 8.2.3.1.

The Elementary Stream payload for the ER AAC Object Types is defined in Subclause 10.5.

6.3� Semantics

6.3.1� AudioObjectType

A five bit field indicating the audio object type. This is the master switch which selects the actual bitstream syntax of the
audio data. In general, different object type use a different bitstream syntax. The interpretation of this field is given in the
Audio Object Type table in subclause 5.1.1.

6.3.2� SamplingFrequency

See ISO/IEC 14496-3 Subpart 1 Main.

6.3.3� SamplingFrequencyIndex

See ISO/IEC 14496-3 Subpart 1 Main.

6.3.4� channelConfiguration

See ISO/IEC 14496-3 Subpart 1 Main.

6.3.5� epToolUsed

If this flag is not set, the payload is conform to the error resilient syntax as described in chapter 10. If this flag is set, the
payload needs to be processed using the ep tool that is configured according to the information provided within
ErrorProtectionSpecificConfig(). The output of the ep tool is conform to the error resilient syntax as described in chapter
10, but migth contain errors.

6.3.6� GASpecificConfig

See subclause 8.1.2.

6.4� Back channel

6.4.1� Introduction

To allow for user on a remote side to dynamically control the streaming of the server, backchannel are defined. Examples
of using back channels are include:

• particular types of error resiliance in which, for example, the terminal may request a retransmission from the stream
server by signalling to it using the backchannel

• particular types of runtime adjustments to the quality of service in which the terminal may request an alternative
bitstream depending on criteria which are encountered during a rendering session

• games and other virtual reality presentations in which runtime control data from the terminal triggers a dynamic
updating of audio elements of scenes.

16

Some tools within MPEG-4 Audio, the existence of a backchannel would allow more efficient operation.

In addition, to allow for user on a remote side to dynamically control the streaming of the server, backchannel streams
carrying user interaction information are defined.

6.4.2� Syntax

6.4.2.1� Back-channel stream for fine grain scalability tool (BSAC)

Table 2.1 Syntax of bsac_backchan_stream()

Syntax No. of bits Mnemonic
Bsac_backchan_stream()
{

numOfSubFrame 8 uimsbf
numOfLayer 8 uimsbf
for (layer=0; layer<numOfLayer; layer++)

Avg_bitrate[layer] 32 uimsbf
}

6.4.2.2� Back-channel stream for TTSI

Table 2.2 Syntax of ttsBackChannel()

Syntax No. of bits Mnemonic
ttsBackChannel() {
{

TtsBackChannelPlay 1 bslbf
TtsBackChannelForward 1 bslbf
TtsBackChannelBackward 1 bslbf
TtsBackChannelStop 1 bslbf

}

6.4.3� General information

6.4.3.1� Decoding of BSAC back-channel stream

BSAC can allow for runtime adjustments to the quality of service. The content of upstream control information
(numOfSubFrame, numOfLayer and Avg_bitrate) is used in the server to implement a stream dynamically and
interactively according to the user control. BSAC data are split and interleaved according to upstream control information.
The detailed process for implementing an AU payload in the server will be described in the clause ‘informative Annex :
Encoder’ of 14496-3 Amd 1.

6.4.3.1.1� Definitions

numOfSubFrameAn 8-bit unsigned integer value representing the number of the frames which are grouped and
transmitted in order to reduce the transmission overhead. The transmission overhead is
decreased but the delay is increased as numOfSubFrame is increased,

numOfLayer An 8-bit unsigned integer value representing the number of the large-step layer which the client
requests to be transmitted from the server.

Avg_bitrate[layer] the average bitrate in bits per second of the large step layer which the client requests to
be transmitted from the server.

17

6.4.3.1.2� Decoding process

The first syntactic element to be read is the 8bit value numOfSubFrame. Next is the 8 bit value numOfLayer. It
represents the number of the syntactic element Avg_bitrate to be read. And the 32 bit values Avg_bitrate follow.

6.4.3.2� Decoding of TTSI back-channel stream

6.4.3.2.1� Definitions

ttsBackChannelPlay This is a one-bit flag which is set to ‘1’ when the user wants to start speech synthesis in
forward direction.

ttsBackChannelForward This is a one-bit flag which is set to ‘1’ when the user wants to change the starting play
position in forward

ttsBackChannelBackward This is a one-bit flag which is set to ‘1’ when the user wants to change the starting play
position in backward

ttsBackChannelStop This is a one-bit flag which is set to ‘1’ when the user wants to stop speech synthesis

6.4.3.2.2� Decoding process

The remote server will be informed the user control by backchannel streams and will control its streaming as indicated.
None of two or more flags can be set to ‘1’ simultaneously.

6.5� MPEG-4 Audio Transport Stream

This section is under discussion.

7� Parametric audio coding (HILN)

7.1� Overview of the tools

MPEG-4 parametric audio coding uses the HILN technique (Harmonic and Individual Line plus Noise) to code non-speech
signals like music at bit rates of 4 kbit/s and higher using a parametric representation of the audio signal. HILN allows
independent change of speed and pitch during decoding. Furthermore HILN can be combined with MPEG-4 parametric
speech coding (HVXC) to form an integrated parametric coder covering a wider range of signals and bit rates.

Bitstream
Decoder

Pitch control factor

Speed control factor

HVXC Decoder
and Synthesiser

HILN Decoder
and Synthesier

HVXC/HILN
Combination

Figure 7.1.1 – Block diagram of the integrated parametric decoder

The integrated parametric coder can operate in the following modes:

18

Table 7.1.1 – Parametric coder operation modes

PARAmode Description
0 HVXC only
1 HILN only
2 switched HVXC / HILN
3 mixed HVXC / HILN

PARAmodes 0 and 1 represent the fixed HVXC and HILN modes. PARAmode 2 permits automatic switching between
HVXC and HILN depending on the current input signal type. In PARAmode 3 the HVXC and HILN decoders can be used
simultaneously and their output signals are added (mixed) in the parametric decoder.

In „switched HVXC / HILN“ and „mixed HVXC / HILN“ modes both HVXC and HILN decoder tools are operated
alternatively or simultaneously according to the PARAswitchMode or PARAmixMode of the current frame. To obtain proper
time alignment of both HVXC and HILN decoder output signals before they are added, a FIFO buffer compensates for the
time difference between HVXC and HILN decoder delay.

To avoid hard transitions at frame boundaries when the HVXC or HILN decoders are switched on or off, the respective
decoder output signals fade in and out smoothly. For the HVXC decoder a 20 ms linear fade is applied when it is switched
on or off. The HILN decoder requires no additional fading because of the smooth synthesis windows utilized in the HILN
synthesizer. It is only necessary to reset the HILN decoder (numLine = 0) if the current bitstream frame contains no
„HILNframe()“.

7.2� Terms and definitions

For the purposes of Subpart 7 the following definitions apply:

HVXC: Harmonic Vector Exitation Coding (parametric speech coding).
HILN: Harmonic and Individual Lines plus Noise (parametric audio coding).
individual line: A spectral component described by frequency, amplitude and phase.
harmonic lines: A set of spectral components having a common fundamental frequency.
noise component: A signal component modeled as noise.
pi: The constant π = 3.14159...

A general glossary and list of symbols and abbreviations is located in Clause 3.

7.3� Bitstream syntax

7.3.1� Decoder configuration (ParametricSpecificConfig)

The decoder configuration information for parametric coding is transmitted in the DecoderConfigDescriptor() of the base
layer and the optional enhancement layer Elementary Stream (see Subclause 6.2.1).

Parametric Base Layer -- Configuration
For the parametric coder in unscalable mode or as base layer in scalable mode the following ParametricSpecificConfig() is
required:

ParametricSpecificConfig() {
PARAconfig();

}

Parametric HILN Enhancement / Extension Layer -- Configuration
To use HILN as core in an "T/F scalable with core" mode, in addition to the HILN basic layer an HILN enhancement layer
is required. In HILN bit rate scalable operation, in addition to the HILN basic layer one or more HILN extension layers are
permitted. Both the enhancement layer and the extension layer have the following ParametricSpecificConfig():

ParametricSpecificConfig() {
HILNenexConfig();

}

19

An MPEG-4 Natural Audio Object using Parametric Coding is transmitted in one or more Elementary Streams: The base
layer stream, an optional enhancement layer stream, and one or more optional extension layer streams.

The bitstream syntax is described in pseudo-C code.

7.3.1.1� Parametric Audio decoder configuration

Table 7.3.1 – Syntax of PARAconfig()

Syntax No. of bits Mnemonic
PARAconfig()
{

PARAmode 2 uimsbf
if (PARAmode != 1) {

HVXCconfig()
}
if (PARAmode != 0) {

HILNconfig()
}
extensionFlag 1 uimsbf
if (extensionFlag) {

< to be defined in MPEG-4 Phase 3 >
}

}

Table 7.3.2 – PARAmode

PARAmode frameLength Description
0 20 ms HVXC only
1 see Clause 7.3.1.2 HILN only
2 40 ms HVXC/HILN switching
3 40 ms HVXC/HILN mixing

7.3.1.2� HILN decoder configuration

Table 7.3.3 – Syntax of HILNconfig()

Syntax No. of bits Mnemonic
HILNconfig()
{

HILNquantMode 1 uimsbf
HILNmaxNumLine 8 uimsbf
HILNsampleRateCode 4 uimsbf
HILNframeLength 12 uimsbf
HILNcontMode 2 uimsbf

}

Table 7.3.4 – Syntax of HILNenexConfig()

Syntax No. of bits Mnemonic
HILNenexConfig()
{

HILNenhaLayer 1 uimsbf
if (HILNenhaLayer) {

HILNenhaQuantMode 2 uimsbf
}

}

20

Table 7.3.5 – HILNsampleRateCode

HILNsampleRateCode sampleRate maxFIndex
0 96000 890
1 88200 876
2 64000 825
3 48000 779
4 44100 765
5 32000 714
6 24000 668
7 22050 654
8 16000 603
9 12000 557
10 11025 544
11 8000 492
12 7350 479
13 reserved reserved
14 reserved reserved
15 reserved reserved

Table 7.3.6 – linebits

MaxNumLine 0 1 2..3 4..7 8..15 16..31 32..63 64..127 128..255
linebits 0 1 2 3 4 5 6 7 8

Table 7.3.7 – HILNcontMode

HILNcontMode additional decoder line continuation (see Clause 6.4.3.1)
0 harmonic lines <-> individual lines and harmonic lines <-> harmonic lines
1 mode 0 plus individual lines <-> individual lines
2 no additional decoder line continuation
3 (reserved)

The number of frequency enhancement bits (fEnhabits[i]) in HILNenhaFrame() is calculated as follows:

• individual line:

 fEnhabits[i] = max(0,fEnhabitsBase[ILFreqIndex[i]]+fEnhabitsMode)

• harmonic line:

fEnhabits[i] = max(0,fEnhabitsBase[harmFreqIndex]+fEnhabitsMode+fEnhabitsHarm[i])

Table 7.3.8 – fEnhabitsBase

ILFreqIndex harmFreqIndex fEnhabitsBase
0.. 159 0..1243 0
160.. 269 1244 .. 1511 1
270.. 380 1512 .. 1779 2
381..491 1780 .. 2047 3
492 .. 602 4
603 .. 713 5
714 .. 890 6

21

Table 7.3.9 – fEnhabitsMode

HILNenhaQuantMode 0 1 2 3
fEnhabitsMode -3 -2 -1 0

Table 7.3.10 – fEnhabitsHarm

i 0 1 2..3 4..7 8..9
fEnhabitsHarm[i] 0 1 2 3 4

Table 7.3.11 – HILN constants

tmbits atkbits decbits
4 4 4

tmEnhbits atkEnhbits decEnhbits phasebits
3 2 2 5

7.3.2� Bitstream Frame (alPduPayload)

The dynamic data for parametric coding is transmitted as AL-PDU payload in the base layer and the optional enhancement
layer Elementary Stream.

Parametric Base Layer -- Access Unit payload
alPduPayload {

PARAframe();
}

Parametric HILN Enhancement / Extension Layer -- Access Unit payload
To parse and decode the HILN enhancement layer, information decoded from the HILN base layer is required. To parse
and decode the HILN extension layer, information decoded from the HILN base layer and possible lower HILN extension
layers is required. The bistream syntax of the HILN extension layers is described in a way which requires the HILN basic
and extension bistream frames being parsed in proper order:

1. HILNbasicFrame() basic bitstream frame

2. HILNextFrame(1) 1st extension bitstream frame (if basic frame available)

3. HILNextFrame(2) 2nd extension bitstream frame
(if basic and1st extension frame available)

4. ...

alPduPayload {
HILNenexFrame();

}

7.3.2.1� Parametric Audio bitstream frame

Table 7.3.12 – Syntax of PARAframe()

Syntax No. of bits Mnemonic
PARAframe()
{

if (PARAmode == 0) {
HVXCframe(HVXCrate)

}
else if (PARAmode == 1) {

22

HILNframe()
}
else if (PARAmode == 2) {

switchFrame()
}
else if (PARAmode == 3) {

mixFrame()
}

}

Table 7.3.13 – Syntax of switchFrame()

Syntax No. of bits Mnemonic
switchFrame()
{

PARAswitchMode 1 uimsbf
if (PARAswitchMode == 0) {

HVXCdoubleframe(HVXCrate)
}
else {

HILNframe()
}

}

One of the following PARAswitchModes is selected in each frame:

Table 7.3.14 – PARAswitchMode

PARAswitchMode Description
0 HVXC only
1 HILN only

Table 7.3.15 – Syntax of mixFrame()

Syntax No. of bits Mnemonic
mixFrame()
{

PARAmixMode 2 uimsbf
if (PARAmixMode == 0) {

HVXCdoubleframe(HVXCrate)
}
else if (PARAmixMode == 1) {

HVXCdoubleframe(2000)
HILNframe()

}
else if (PARAmixMode == 2) {

HVXCdoubleframe(4000)
HILNframe()

}
else if (PARAmixMode == 3) {

HILNframe()
}

}

One of the following PARAmixModes is selected in each frame:

23

Table 7.3.16 – PARAmixMode

PARAmixMode Description
0 HVXC only
1 HVXC 2 kbit/s & HILN
2 HVXC 4 kbit/s & HILN
3 HILN only

Table 7.3.17 – Syntax of HVXCdoubleframe()

Syntax No. of bits Mnemonic
HVXCdoubleframe(rate)
{

if (rate >= 3000) {
HVXCfixframe(4000)
HVXCfixframe(rate * 2 - 4000)

}
else {

HVXCfixframe(2000)
HVXCfixframe(rate * 2 - 2000)

}
}

7.3.2.2� HILN bitstream frame

Table 7.3.18 – Syntax of HILNframe()

Syntax No. of bits Mnemonic
HILNframe()
{

numLayer = 0
HILNbasicFrame()
layNumLine[0] = numLine
layPrevNumLine[0] = prevNumLine
for (k=0; k<prevNumLine; k++) {

layPrevLineContFlag[0][k] = prevLineContFlag[k]
}

}

Table 7.3.19 – Syntax of HILNbasicFrame()

Syntax No. of bits Mnemonic
HILNbasicFrame()
{

prevNumLine = numLine
/* prevNumLine is set to the number of lines */
/* in the previous frame */
/* prevNumLine = 0 for the first bitstream frame */
NumLine linebits uimsbf
HarmFlag 1 uimsbf
NoiseFlag 1 uimsbf
PhaseFlag 1 uimsbf
if (phaseFlag) {

NumLinePhase linebits uimsbf
}
MaxAmplIndexCoded 4 uimsbf
maxAmplIndex = 4*maxAmplIndexCoded
EnvFlag 1 uimsbf

24

if (envFlag) {
EnvTmax tmbits uimsbf
EnvRatk atkbits uimsbf
EnvRdec decbits uimsbf

}
for (k=0; k<prevNumLine; k++) {

prevLineContFlag[k] 1 uimsbf
}
i = 0
for (k=0; k<prevNumLine; k++) {

if (prevLineContFlag[k]) {
linePred[i] = k
lineContFlag[i++] = 1

}
}
while (i<numLine) {

lineContFlag[i++] = 0
}
if (harmFlag) {

HARMbasicPara()
}
if (noiseFlag) {

NOISEbasicPara()
}
INDIbasicPara()
if (phaseFlag) {

INDIphasePara()
}

}

Table 7.3.20 – Syntax of HARMbasicPara()

Syntax No. of bits Mnemonic
HARMbasicPara()
{

NumHarmParaIndex 4 uimsbf
numHarmPara = numHarmParaTable[numHarmParaIndex]
NumHarmLineIndex 5 uimsbf
numHarmLine = numHarmLineTable[numHarmLineIndex]
HarmContFlag 1 uimsbf
if (phaseFlag && ! harmContFlag) {

NumHarmPhase 6 uimsbf
}
else {

numHarmPhase = 0
}
HarmEnvFlag 1 uimsbf
if (harmContFlag) {

ContHarmAmpl 3..8 DIA
harmAmplIndex = prevHarmAmplIndex +

contHarmAmpl
ContHarmFreq 2..9 DHF
harmFreqIndex = prevHarmFreqIndex + contHarmFreq

}
else {

HarmAmplRel 6 uimsbf
harmAmplIndex = maxAmplIndex + harmAmplRel
HarmFreqIndex 11 uimsbf

}

25

HarmFreqStretch 1..7 HFS
for (i=0; i<2; i++) {

harmLAR[i] 4..19 LARH1
}
for (i=2; i<min(7,numHarmPara); i++) {

harmLAR[i] 3..18 LARH2
}
for (i=7; i<numHarmPara; i++) {

harmLAR[i] 2..17 LARH3
}
for (i=0; i<numHarmPhase; i++) {

harmPhase[i] phasebits uimsbf
harmPhaseAvail[i] = 1

}
for (i=numHarmPhase; i<numHarmLine; i++) {

harmPhaseAvail[i] = 0
}

}

Table 7.3.21 – numHarmLineTable

i 0 1 2 3 4 5 6 7
numHarmLineTable[i] 3 4 5 6 7 8 9 10
i 8 9 10 11 12 13 14 15
numHarmLineTable[i] 12 14 16 19 22 25 29 33
i 16 17 18 19 20 21 22 23
numHarmLineTable[i] 38 43 49 56 64 73 83 94
i 24 25 26 27 28 29 30 31
numHarmLineTable[i] 107 121 137 155 175 197 222 250

Table 7.3.22 – numHarmParaTable

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
numHarmParaTable[i] 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25

Table 7.3.23 – Syntax of NOISEbasicPara()

Syntax No. of bits Mnemonic
NOISEbasicPara()
{

NumNoiseParaIndex 4 uimsbf
numNoisePara = numNoiseParaTable[numNoiseIndex]
NoiseContFlag 1 uimsbf
NoiseEnvParaFlag 1 uimsbf
if (noiseContFlag) {

ContNoiseAmpl 3..8 DIA
noiseAmplIndex = prevNoiseAmplIndex +

contNoiseAmpl
}
else {

NoiseAmplRel 6 uimsbf
noiseAmplIndex = maxAmplIndex + noiseAmplRel

}
if (noiseEnvParaFlag) {

NoiseEnvTmax tmbits uimsbf
NoiseEnvRatk atkbits uimsbf
NoiseEnvRdec decbits uimsbf

26

}
for (i=0; i<min(2,numHarmPara); i++) {

harmLAR[i] 2..17 LARN1
}
for (i=2; i<numHarmPara; i++) {

harmLAR[i] 1..18 LARN2
}

}

Table 7.3.24 – numNoiseParaTable

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
numNoiseParaTable[i] 1 2 3 4 5 6 7 9 11 13 15 17 19 21 23 25

Table 7.3.25 – Syntax of INDIbasicPara()

Syntax No. of bits Mnemonic
INDIbasicPara()
{

lastNLFreq = 0
for (i=0; i<prevNumLine; i++) {

prevILFreqIndex[i] = ILFreqIndex[i]
prevILAmplIndex[i] = ILAmplIndex[i]

}
for (i=0; i<numLine; i++) {

if (envParaFlag) {
lineEnvFlag[i] 1 uimsbf

}
if (lineContFlag[i]) {

DILFreq[i] 2..10 DIF
ILFreqIndex[i] = prevILFreqIndex[linePred[i]] +

DILFreq[i]
DILAmpl[i] 3..8 DIA
ILAmplIndex[i] = prevILAmplIndex[linePred[i]] +

DILAmpl[i]
}
else {

if (numLine-1-i < 7) {
ILFreqInc[i]
/* SDCdecode (maxFindex-lastNLFreq, */
/* sdcILFTable[numLine-1-i]) */

0..14 SDC

}
else {

ILFreqInc[i]
/* SDCdecode (maxFindex-lastNLFreq, */
/* sdcILFTable[7]) */

0..14 SDC

}
ILFreqIndex[i] = lastNLFreq + DILFreq[i]
lastNLFreq = ILFreqIndex[i]
if (HILNquantMode) {

ILAmplRel[i]
/* SDCdecode (50, sdcILATable) */

4..10 SDC

ILAmplIndex[i] = maxAmplIndex + ILAmplRel[i]
}
else {

ILAmplRel[i]
/* SDCdecode (25, sdcILATable) */

3..9 SDC

27

ILAmplIndex[i] = maxAmplIndex +
2*ILAmplRel[i]

}
}

}
}

Table 7.3.26 – Syntax of INDIphasePara()

Syntax No. of bits Mnemonic
INDIphasePara()
{

j = 0
for (i=0; i<numLine; i++) {

if (! linePred[i] && j<numLinePhase) {
linePhase[i] phasebits uimsbf
linePhaseAvail[i] = 1
j++

}
else {

linePhaseAvail[i] = 0
}

}
}

Table 7.3.27 – Syntax of HILNenexFrame()

Syntax No. of bits Mnemonic
HILNenexFrame()
{

/* HILNenhaLayer value in ParametricSpecificConfig() of */
/* this Elementary Stream must be used here! */
if (HILNenhaLayer) {

HILNenhaFrame()
}
else {

numLayer++
HILNextFrame(numLayer)

}
}

Table 7.3.28 – Syntax of HILNenhaFrame()

Syntax No. of bits Mnemonic
HILNenhaFrame()
{

if (envFlag) {
EnvTmaxEnha tmEnhbits uimsbf
EnvRatkEnha atkEnhbits uimsbf
EnvRdecEnha decEnhbits uimsbf

}
if (harmFlag) {

HARMenhaPara()
}
INDIenhaPara()

}

28

Table 7.3.29 – Syntax of HARMenhaPara()

Syntax No. of bits Mnemonic
HARMenhaPara()
{

for (i=0; i<min(numHarmLine,10); i++) {
harmFreqEnha[i] fEnhbits[i] uimsbf
harmPhase[i] phasebits uimsbf

}
}

Table 7.3.30 – Syntax of INDIenhaPara()

Syntax No. of bits Mnemonic
INDIenhaPara()
{

for (i=0; i<numLine; i++) {
lineFreqEnha[i] fEnhbits[i] uimsbf
linePhase[i] phasebits uimsbf

}
}

Table 7.3.31 – Syntax of HILNextFrame()

Syntax No. of bits Mnemonic
HILNextFrame(numLayer)
{

layPrevNumLine[numLayer] = layNumLine[numLayer]
/* layPrevNumLine[numLayer] = 0 for the */
/* first bitstream frame */
addNumLine[numLayer] linebits uimsbf
if (phaseFlag) {

layNumLinePhase[numLayer] linebits uimsbf
}
layNumLine[numLayer] = layNumLine[numLayer-1] +

addNumLine[numLayer]
for (k=0; k<layPrevNumLine[numLayer-1]; k++) {

if (layPrevLineContFlag[numLayer-1][k]) {
layPrevLineContFlag[numLayer][k] = 1

}
else {

layPrevLineContFlag[numLayer][k] 1 uimsbf
}

}
for (k=layPrevNumLine[numLayer-1];

k<layPrevNumLine[numLayer]; k++) {
layPrevLineContFlag[numLayer][k] 1 uimsbf

}
i = layNumLine[numLayer-1]
for (k=0; k<layPrevNumLine[numLayer-1]; k++) {

if (!layPrevLineContFlag[numLayer-1][k] &&
layPrevLineContFlag[numLayer][k]) {

linePred[i] = k
lineContFlag[i++] = 1

}
}
for (k=layPrevNumLine[numLayer-1];

k<layPrevNumLine[numLayer]; k++) {
if (layPrevLineContFlag[numLayer][k]) {

29

linePred[i] = k
lineContFlag[i++] = 1

}
}
while (i<layNumLine[numLayer]) {

lineContFlag[i++] = 0
}
INDIextPara(numLayer)
if (phaseFlag) {

INDIextPhasePara(numLayer)
}

}

Table 7.3.32 – Syntax of INDIextPara()

Syntax No. of bits Mnemonic
INDIextPara(numLayer)
{

lastNLFreq = 0
for (i=layPrevNumLine[numLayer-1];

i<layPrevNumLine[numLayer]; i++) {
prevILFreqIndex[i] = ILFreqIndex[i]
prevILAmplIndex[i] = ILAmplIndex[i]

}
for (i=layNumLine[numLayer-1];

i<layNumLine[numLayer]; i++) {
if (envParaFlag) {

lineEnvFlag[i] 1 uimsbf
}
if (lineContFlag[i]) {

DILFreq[i] 2..10 DIF
ILFreqIndex[i] = prevILFreqIndex[linePred[i]] +

DILFreq[i]
DILAmpl[i] 3..8 DIA
ILAmplIndex[i] = prevILAmplIndex[linePred[i]] +

DILAmpl[i]
}
else {

if (layNumLine[numLayer]-1-i < 7) {
ILFreqInc[i]
/* SDCdecode (maxFindex-lastNLFreq, */
/* sdcILFTable[layNumLine[numLayer]-1-i]) */

0..14 SDC

}
else {

ILFreqInc[i]
/* SDCdecode (maxFindex-lastNLFreq, */
/* sdcILFTable[7]) */

0..14 SDC

}
ILFreqIndex[i] = lastNLFreq + DILFreq[i]
lastNLFreq = ILFreqIndex[i]
if (HILNquantMode) {

ILAmplRel[i]
/* SDCdecode (50, sdcILATable) */

4..10 SDC

ILAmplIndex[i] = maxAmplIndex + ILAmplRel[i]
}
else {

ILAmplRel[i]
/* SDCdecode (25, sdcILATable) */

3..9 SDC

ILAmplIndex[i] = maxAmplIndex +
2*ILAmplRel[i]

30

}
}

}
}

Table 7.3.33 – Syntax of INDIextPhasePara()

Syntax No. of bits Mnemonic
INDIextPhasePara(numLayer)
{

j = 0
for (i=layNumLine[numLayer-1]; i<layNumLine[numLayer];

i++) {
if (! linePred[i] && j<layNumLinePhase[numLayer]) {

linePhase[i] phasebits uimsbf
linePhaseAvail[i] = 1
j++

}
else {

linePhaseAvail[i] = 0
}

}
}

7.3.2.3� HILN codebooks

Table 7.3.34 – LARH1 code (harmLAR[0..1])

codeword harmLAR[i] codeword harmLAR[i]
1000000000000000100 -6.350 0100 0.050
1000000000000000101 -6.250 0101 0.150
1000000000000000110 -6.150 0110 0.250
1000000000000000111 -6.050 0111 0.350
100000000000000100 -5.950 00100 0.450
100000000000000101 -5.850 00101 0.550
100000000000000110 -5.750 00110 0.650
100000000000000111 -5.650 00111 0.750
10000000000000100 -5.550 000100 0.850
10000000000000101 -5.450 000101 0.950
10000000000000110 -5.350 000110 1.050
10000000000000111 -5.250 000111 1.150
1000000000000100 -5.150 0000100 1.250
1000000000000101 -5.050 0000101 1.350
1000000000000110 -4.950 0000110 1.450
1000000000000111 -4.850 0000111 1.550
100000000000100 -4.750 00000100 1.650
100000000000101 -4.650 00000101 1.750
100000000000110 -4.550 00000110 1.850
100000000000111 -4.450 00000111 1.950
10000000000100 -4.350 000000100 2.050
10000000000101 -4.250 000000101 2.150
10000000000110 -4.150 000000110 2.250
10000000000111 -4.050 000000111 2.350
1000000000100 -3.950 0000000100 2.450
1000000000101 -3.850 0000000101 2.550
1000000000110 -3.750 0000000110 2.650
1000000000111 -3.650 0000000111 2.750
100000000100 -3.550 00000000100 2.850
100000000101 -3.450 00000000101 2.950

31

100000000110 -3.350 00000000110 3.050
100000000111 -3.250 00000000111 3.150
10000000100 -3.150 000000000100 3.250
10000000101 -3.050 000000000101 3.350
10000000110 -2.950 000000000110 3.450
10000000111 -2.850 000000000111 3.550
1000000100 -2.750 0000000000100 3.650
1000000101 -2.650 0000000000101 3.750
1000000110 -2.550 0000000000110 3.850
1000000111 -2.450 0000000000111 3.950
100000100 -2.350 00000000000100 4.050
100000101 -2.250 00000000000101 4.150
100000110 -2.150 00000000000110 4.250
100000111 -2.050 00000000000111 4.350
10000100 -1.950 000000000000100 4.450
10000101 -1.850 000000000000101 4.550
10000110 -1.750 000000000000110 4.650
10000111 -1.650 000000000000111 4.750
1000100 -1.550 0000000000000100 4.850
1000101 -1.450 0000000000000101 4.950
1000110 -1.350 0000000000000110 5.050
1000111 -1.250 0000000000000111 5.150
100100 -1.150 00000000000000100 5.250
100101 -1.050 00000000000000101 5.350
100110 -0.950 00000000000000110 5.450
100111 -0.850 00000000000000111 5.550
10100 -0.750 000000000000000100 5.650
10101 -0.650 000000000000000101 5.750
10110 -0.550 000000000000000110 5.850
10111 -0.450 000000000000000111 5.950
1100 -0.350 0000000000000000100 6.050
1101 -0.250 0000000000000000101 6.150
1110 -0.150 0000000000000000110 6.250
1111 -0.050 0000000000000000111 6.350

Table 7.3.35 – LARH2 code (harmLAR[2..6])

codeword harmLAR[.] codeword harmLAR[.]
100000000000000010 -4.725 010 0.075
100000000000000011 -4.575 011 0.225
10000000000000010 -4.425 0010 0.375
10000000000000011 -4.275 0011 0.525
1000000000000010 -4.125 00010 0.675
1000000000000011 -3.975 00011 0.825
100000000000010 -3.825 000010 0.975
100000000000011 -3.675 000011 1.125
10000000000010 -3.525 0000010 1.275
10000000000011 -3.375 0000011 1.425
1000000000010 -3.225 00000010 1.575
1000000000011 -3.075 00000011 1.725
100000000010 -2.925 000000010 1.875
100000000011 -2.775 000000011 2.025
10000000010 -2.625 0000000010 2.175
10000000011 -2.475 0000000011 2.325
1000000010 -2.325 00000000010 2.475
1000000011 -2.175 00000000011 2.625
100000010 -2.025 000000000010 2.775
100000011 -1.875 000000000011 2.925
10000010 -1.725 0000000000010 3.075
10000011 -1.575 0000000000011 3.225

32

1000010 -1.425 00000000000010 3.375
1000011 -1.275 00000000000011 3.525
100010 -1.125 000000000000010 3.675
100011 -0.975 000000000000011 3.825
10010 -0.825 0000000000000010 3.975
10011 -0.675 0000000000000011 4.125
1010 -0.525 00000000000000010 4.275
1011 -0.375 00000000000000011 4.425
110 -0.225 000000000000000010 4.575
111 -0.075 000000000000000011 4.725

Table 7.3.36 – LARH3 code (harmLAR[7..25])

codeword harmLAR[.] codeword harmLAR[.]
10000000000000001 -2.325 01 0.075
1000000000000001 -2.175 001 0.225
100000000000001 -2.025 0001 0.375
10000000000001 -1.875 00001 0.525
1000000000001 -1.725 000001 0.675
100000000001 -1.575 0000001 0.825
10000000001 -1.425 00000001 0.975
1000000001 -1.275 000000001 1.125
100000001 -1.125 0000000001 1.275
10000001 -0.975 00000000001 1.425
1000001 -0.825 000000000001 1.575
100001 -0.675 0000000000001 1.725
10001 -0.525 00000000000001 1.875
1001 -0.375 000000000000001 2.025
101 -0.225 0000000000000001 2.175
11 -0.075 00000000000000001 2.325

Table 7.3.37 – LARN1 code (noiseLAR[0,1])

codeword noiseLAR[.] codeword noiseLAR[.]
10000000000000001 -4.65 01 0.15
1000000000000001 -4.35 001 0.45
100000000000001 -4.05 0001 0.75
10000000000001 -3.75 00001 1.05
1000000000001 -3.45 000001 1.35
100000000001 -3.15 0000001 1.65
10000000001 -2.85 00000001 1.95
1000000001 -2.55 000000001 2.25
100000001 -2.25 0000000001 2.55
10000001 -1.95 00000000001 2.85
1000001 -1.65 000000000001 3.15
100001 -1.35 0000000000001 3.45
10001 -1.05 00000000000001 3.75
1001 -0.75 000000000000001 4.05
101 -0.45 0000000000000001 4.35
11 -0.15 00000000000000001 4.65

Table 7.3.38 – LARN2 code (noiseLAR[2..25])

codeword noiseLAR[.] codeword noiseLAR[.]
110000000000000001 -6.35 101 0.35
11000000000000001 -5.95 1001 0.75
1100000000000001 -5.55 10001 1.15
110000000000001 -5.15 100001 1.55

33

11000000000001 -4.75 1000001 1.95
1100000000001 -4.35 10000001 2.35
110000000001 -3.95 100000001 2.75
11000000001 -3.55 1000000001 3.15
1100000001 -3.15 10000000001 3.55
110000001 -2.75 100000000001 3.95
11000001 -2.35 1000000000001 4.35
1100001 -1.95 10000000000001 4.75
110001 -1.55 100000000000001 5.15
11001 -1.15 1000000000000001 5.55
1101 -0.75 10000000000000001 5.95
111 -0.35 100000000000000001 6.35
0 0.00

Table 7.3.39 – DIA code

codeword value codeword value
111 1 1111 -25 001 1
111 1 1110 -24 011 0 2
111 1 1101 -23 100 0 3
111 1 xxxx -y 101 0 0 4
111 1 0001 -11 101 0 1 5
111 1 0000 -10 110 0 00 6
110 1 11 -9 110 0 01 7
110 1 10 -8 110 0 10 8
110 1 01 -7 110 0 11 9
110 1 00 -6 111 0 0000 10
101 1 1 -5 111 0 0001 11
101 1 0 -4 111 0 xxxx y
100 1 -3 111 0 1101 23
011 1 -2 111 0 1110 24
010 -1 111 0 1111 25
000 0

Table 7.3.40 – DIF code

codeword value codeword value
11 11 1 11111 -42 01 0 1
11 11 1 11110 -41 10 0 0 2
11 11 1 11101 -40 10 0 1 3
11 11 1 xxxxx -y 11 00 0 4
11 11 1 00001 -12 11 01 0 0 5
11 11 1 00000 -11 11 01 0 1 6
11 10 1 11 -10 11 10 0 00 7
11 10 1 10 -9 11 10 0 01 8
11 10 1 01 -8 11 10 0 10 9
11 10 1 00 -7 11 10 0 11 10
11 01 1 1 -6 11 11 0 00000 11
11 01 1 0 -5 11 11 0 00001 12
11 00 1 -4 11 11 0 xxxxx y
10 1 1 -3 11 11 0 11101 40
10 1 0 -2 11 11 0 11110 41
01 1 -1 11 11 0 11111 42
00 0

Table 7.3.41 – DHF code

codeword value codeword value

34

11 1 111111 -69 01 0 1
11 1 111110 -68 10 0 00 2
11 1 111101 -67 10 0 01 3
11 1 xxxxxx -y 10 0 10 4
11 1 000001 -7 10 0 11 5
11 1 000000 -6 11 0 000000 6
10 1 11 -5 11 0 000001 7
10 1 10 -4 11 0 xxxxxx y
10 1 01 -3 11 0 111101 67
10 1 00 -2 11 0 111110 68
01 1 -1 11 0 111111 69
00 0

Table 7.3.42 – HFS code

codeword value codeword value
1 1 1 1111 -17 1 0 0 1
1 1 1 1110 -16 1 0 1 0000 2
1 1 1 1101 -15 1 0 1 0001 3
1 1 1 xxxx -y 1 0 1 xxxx y
1 1 1 0001 -3 1 0 1 1101 15
1 1 1 0000 -2 1 0 1 1110 16
1 1 0 -1 1 0 1 1111 17
0 0

Notes on Table 7.3.39 to Table 7.3.42: The grouping of bits within a codeword (e.g. “1 1 1 1111”) is provided for easier
readability only. Codewords not explicitely listed in the codebooks (e.g. “1 1 1 xxxx”) are defined by incrementing or
decrementing the implicit part of the codeword “xxxx” (uimsbf) and the magnitude “y” of the corresponding value. In all
cases, the codewords and values for the two smallest and the three largest magnitudes are listed explicitely.

7.3.2.4� HILN SubDivisionCode (SDC)

The SubDivisionCode (SDC) is an algorithmically generated variable length code, based on a given table and a given
number of different codewords. The decoding process is defined below.

The idea behind this coding scheme is the subdivision of the probability density function into two parts which represent an
equal probability. One bit is transmitted that determines the part the value to be coded is located. This subdivision is
repeated until the width of the part is one and its position and the value to be coded are equal. The positions of the
domain-limits are taken out off a table of 32 quantized, fixed point values. Besides this table, tab, the number of different
codewords, is needed, too.

The following C function and tables describe the decoding. GetBit() returns the the next bit in the stream.

int sdcILATable[32] = {
 0, 13, 27, 41, 54, 68, 82, 96, 110, 124, 138, 152, 166, 180, 195, 210,
 225, 240, 255, 271, 288, 305, 323, 342, 361, 383, 406, 431, 460, 494, 538, 602
};

int sdcILFTable[8][32] = {
{ 0, 53, 87, 118, 150, 181, 212, 243, 275, 306, 337, 368, 399, 431, 462, 493,
 524, 555, 587, 618, 649, 680, 711, 743, 774, 805, 836, 867, 899, 930, 961, 992 },
{ 0, 34, 53, 71, 89, 106, 123, 141, 159, 177, 195, 214, 234, 254, 274, 296,
 317, 340, 363, 387, 412, 438, 465, 494, 524, 556, 591, 629, 670, 718, 774, 847 },
{ 0, 26, 41, 54, 66, 78, 91, 103, 116, 128, 142, 155, 169, 184, 199, 214,
 231, 247, 265, 284, 303, 324, 346, 369, 394, 422, 452, 485, 524, 570, 627, 709 },
{ 0, 23, 35, 45, 55, 65, 75, 85, 96, 106, 117, 128, 139, 151, 164, 177,
 190, 204, 219, 235, 252, 270, 290, 311, 334, 360, 389, 422, 461, 508, 571, 665 },
{ 0, 20, 30, 39, 48, 56, 64, 73, 81, 90, 99, 108, 118, 127, 138, 149,
 160, 172, 185, 198, 213, 228, 245, 263, 284, 306, 332, 362, 398, 444, 507, 608 },
{ 0, 18, 27, 35, 43, 50, 57, 65, 72, 79, 87, 95, 104, 112, 121, 131,

35

 141, 151, 162, 174, 187, 201, 216, 233, 251, 272, 296, 324, 357, 401, 460, 558 },
{ 0, 16, 24, 31, 38, 45, 51, 57, 64, 70, 77, 84, 91, 99, 107, 115,
 123, 132, 142, 152, 163, 175, 188, 203, 219, 237, 257, 282, 311, 349, 403, 493 },
{ 0, 12, 19, 25, 30, 35, 41, 46, 51, 56, 62, 67, 73, 79, 85, 92,
 99, 106, 114, 122, 132, 142, 153, 165, 179, 195, 213, 236, 264, 301, 355, 452 }
};

int SDCDecode (int k, int *tab)
{

int *pp;
int g,dp,min,max;

min=0;
max=k-1;
pp=tab+16;
dp=16;

while (min!=max)
{

if (dp) g=(k*(*pp))>>10; else g=(max+min)>>1;
dp>>=1;
if (GetBit()==0) { pp-=dp; max=g; } else { pp+=dp; min=g+1; }

}
return max;

}

7.4� Bitstream semantics

7.4.1� Decoder Configuration (ParametricSpecificConfig)

7.4.1.1� Parametric Audio decoder configuration

PARAmode A 2 bit field indicating parametric coder operation mode.
extensionFlag A flag indicating the presence of MPEG-4 Version 2 data (for future use).

7.4.1.2� HILN decoder configuration

HILNquantMode A 1 bit field indicating the individual line quantizer mode.
HILNmaxNumLine A field indicating the maximum number of individual lines in a bitstream frame.
HILNsampleRateCode A 4 bit field indicating sampling rate used within the line frequency dequantization.
HILNframeLength A field indicating the HILN frame length.
HILNcontMode A 2 bit field indicating the additional decoder line continuation mode.
HILNenhaQuantMode A 2 bit field indicating frequency enhancement quantizer mode.

7.4.2� Bitstream Frame (alPduPayload)

7.4.2.1� Parametric Audio bitstream frame

PARAswitchMode A flag indicating which coding tools are used in the current frame of a HVXC/HILN
switching bitstream.

PARAmixMode A 2 bit field indicating which coding tools are used in the current frame of a HVXC/HILN
mixing bitstream.

7.4.2.2� HILN bitstream frame

numLine A field indicating the number of indiividual lines in the current frame.
envFlag A flag indicating the presence of envelope data in the current frame.
harmFlag A flag indicating the presence of harmonic line data in the current frame.
noiseFlag A flag indicating the presence of noise component data in the current frame.
envTmax Coded envelope parameter: time of maximum.

36

envRatk Coded envelope parameter: attack rate.
envRdec Coded envelope parameter: decay rate.
prevLineContFlag[k] A flag indicating that the k-th individual line of the previous frame is continued in the

current frame.
maxAmplIndexCoded A field indicating the maximum amplitude in the current frame.
numHarmParaIndex A field indicating the number of transmitted harmonic line LPC parameters in the current

frame.
numHarmLineIndex A field indicating the number of harmonic lines in the current frame.
harmContFlag A flag indicating that the harmonic lines are continued from the previous frame.
harmEnvFlag A flag indicating that the amplitude envelope is applied to the harmonic lines.
contHarmAmpl Coded amplitude change of the harmonic lines.
contHarmFreq Coded fundamental frequency change of the harmonic lines.
harmAmplRel Coded amplitude of the harmonic lines.
harmFreqIndex Coded fundamental frequency of the harmonic lines.
harmFreqStretch Coded frequency stretching parameter of the harmonic lines.
harmLAR[i] Coded LAR LPC parameters of the harmonic lines.
numNoiseParaIndex A field indicating the number of noise parameters in the current frame.
noiseContFlag A flag indicating that the noise is continued from the previous frame.
noiseEnvFlag A flag indicating that noise envelope data is present in the current frame.
contNoiseAmpl Coded amplitude change of the noise.
noiseAmplRel Coded amplitude of the noise.
noiseEnvTmax Coded noise envelope parameter: time of maximum
noiseEnvRatk Coded noise envelope parameter: attack rate.
noiseEnvRdec Coded noise envelope parameter: decay rate.
noiseLAR[i] Coded LAR LPC parameters of the noise.
lineEnvFlag[i] A flag indicating that the amplitude envelope is applied to the i-th individual line.
DILFreq[i] Coded frequency change of i-th individual line.
DILAmpl[i] Coded amplitude change of i-th individual line.
ILFreqInc[i] Coded frequency of i-th individual line.
ILAmplRel[i] Coded amplitude of i-th individual line.
envTmaxEnha Coded envelope enhancement parameter: time of maximum.
envRatkEnha Coded envelope enhancement parameter: attack rate.
envRdecEnha Coded envelope enhancement parameter: decay rate.
harmFreqEnha[i] Coded frequency enhancement of i-th harmonic line.
harmPhase[i] Coded phase of i-th harmonic line.
lineFreqEnha[i] Coded frequency enhancement of i-th individual line.
linePhase[i] Coded phase of i-th individual line.

7.5� Parametric decoder tools

7.5.1� HILN decoder tools

The Harmonic and Individual Lines plus Noise (HILN) decoder utilizes a set of parameters which are encoded in the
bitstream to describe the audio signal. Three different signal models are supported:

Table 7.5.1 – HILN signal models

signal model description parameters
harmonic lines group of sinusoidal signals with

common fundamental frequency
fundamental frequency and
amplitudes of the spectral lines

individual lines sinusoidal signals frequency and amplitude of the
individual spectral lines

noise spectrally shaped noise signal spectral shape and power of the
noise

37

The HILN decoder first reconstructs these parameters from the bitstream with a set of decoding tools and then synthesizes
the audio signal based on these parameters using a set of synthesizer tools:

• harmonic line decoder

• individual line decoder

• noise decoder

• harmonic and individual line synthesizer

• noise synthesizer

The HILN decoder tools reconstruct the parameters of the harmonic and individual lines (frequency, amplitude) and the
noise (spectral shape) as well as possible envelope parameters from the bitstream.

The HILN synthesizer tools reconstruct one frame of the audio signal based on the parameters decoded by the HILN
decoder tools for the current bitstream frame.

The samples of the decoded audio signal have a full scale range of [-32768, 32767] and eventual outliers should be limited
("clipped") to these values.

The HILN decoder supports a wide range of frame lengths and sampling frequencies. By scaling the synthesizer frame
length with an arbitrary factor, speed change functionality is available at the decoder. By scaling the line frequencies and
resampling the noise signal with an arbitrary factor, pitch change functionality is available at the decoder.

The HILN decoder can operate in two different modes, as basic decoder and as enhanced decoder. The basic decoder
which is used for normal operation only evaluates the information available in the bitstream elements HILNbasicFrame() to
reconstruct the audio signal. To allow large step scalability in combination with other coder rools (e.g. GA scalable) the
additional bitstream elements HILNenhaFrame() need to be transmitted and the HILN decoder must operate in the
enhanced mode which exploits the information of both HILNbasicFrame() and HILNenhaFrame(). This mode reconstructs
an audio signal with well defined phase relationships which can be combined with a residual signal coded at higher bit
rates using an enhancement coder (e.g. GA scalable). If the HILN decoder is used in this way as a core for a scalable
coder no noise signal must be synthesized for the signal which is given to the enhancement decoder.

Due to the parametric signal representation utilised by the HILN parametric coder, it is well suited for applications requiring
bit rate scalable coding. HILN bit rate scalable coding is accomplished by supplementing the data encoded in an
HILNbasicFrame() of the basic bitstream by data encoded in one or more HILNextFrame() of one ore more extension
bitstreams transmitted as additional Elementary Streams. It should be noted that the coding efficiency of a combined
bitstream consisting of a basic and one or more extension bistreams is slighty lower than the conding efficiency of an non-
scalable basic bitstream having the same total bit rate.

7.5.1.1� Harmonic line decoder

7.5.1.1.1� Tool description

This tool decodes the parameters of the harmonics lines transmitted in the bitstream.

7.5.1.1.2� Definitions

numHarmPara Number of harmonic line LPC parameters.
numHarmLine Number of harmonic lines.
harmLPCPara[i] Harmonic line LPC parameter i (for harmonic tone spectrum).
harmAmpl Harmonic tone amplitude.
harmPwr Harmonic tone power.
hLineAmpl[i] Amplitude of i-th harmonic line.
hLineFreq[i] Frequency of i-th harmonic line (in Hz).
hLineAmplEnh[i] Enhanced amplitude of i-th harmonic line.
hLineFreqEnh[i] Enhanced frequency of i-th harmonic line (in Hz).
hLinePhaseEnh[i] Phase of i-th harmonic line (in rad).

38

7.5.1.1.3� Decoding process

If the „harmFlag“ is set and thus HARMbasicPara() data and in enhancement mode HARMenhaPara() data is available in
the current frame, the parameters of the harmonic lines are decoded and dequantized as follows:

7.5.1.1.3.1� Basic decoder

A harmonic tone is represented by its fundamental frequency, its power and a set of LPC-Parameters.

First the harmNumPara LAR parameters are reconstructed. Prediction from the previous frame is used when
harmContFlag is set.

float harmLPCMean[25] = { 5.0, -1.5, 0.0, 0.0, 0.0, ... , 0.0 };
float harmPredCoeff[25] = { 0.75, 0.75, 0.5, 0.5, 0.5, ... , 0.5 };

for (i=0; i<numHarmPara; i++) {
if (i<prevNumHarmPara && harmContFlag)

pred = harmLPCMean[i] +
(prevHarmLPCPara[i]-harmLPCMean[i])*harmPredCoeff[i];

else
pred = harmLPCMean[i];

harmLPCPara[i] = pred + harmLAR[i];
}

prevNumHarmPara = numHarmPara;

The fundamental frequency and stretching of the harmonic lines are dequantized:

hFreq = 20 * exp(log(4000./20.) * (harmFreqIndex+0.5) / 2048.0);
hStretch = harmFreqStretch / 16000.0

The amplitude and power of the harmonic tone is dequantized as follows:

harmAmpl = 32768 * pow(10, -1.5*(harmAmplIndex+0.5)/20);
harmPwr = harmAmpl*harmAmpl;

The harmEnv and harmPred flags require no further dequantization; they are directly passed on to the synthesizer tool.

The LPC-Parameters are transmitted in the form of "Logarithmic Area Ratios" (LAR) as described above. After decoding
the parameters the frequencies and amplitudes of the harmNumLine partials of the harmonic tone are calculated as
follows:

The frequencies of the harmonic lines are calculated:

for (i=0; i<numHarmLine; i++)
hLineFreq[i] = hFreq * (i+1) * (1 + hStretch*(i+1))

The LPC-Parameters represent an IIR-Filter. The amplitudes of the sinusoids are revealed by calculating the absolute
value of this filter's system function at the corresponding freqencies.

for (i=0; i<numHarmLine; i++)
ha[i] = abs(H(exp(j * pi * (i+1)/(numHarmLine+1)))

with

H(z) = 1 / (1 - h[0]*z^-1 - h[1]*z^-2 - ... - h[numHarmPara-1]*z^-numHarmPara)

The system function H(z) is calculated from the LARs by the following algorithm:

In a first step the LARs are converted to reflection coefficients:

for (n=0; n<numHarmPara; n++)

39

r[n] = (exp(harmLPCPara[n]) - 1) / (exp(harmLPCPara[n]) + 1)

After this the reflection coefficients are converted to the time response. The C function given below does this conversion in
place: (call with x[n]=r[n] return with x[n]=h[n])

void Convert_k_to_h (float *x, int N)
{

int i,j;
float a,b,c;

for (i=1; i<N; i++)
{

c=x[i];

for (j=0; j<i-j-1; j++)
{

a=x[j];
b=x[i-j-1];
x[j]=a-c*b;
x[i-j-1]=b-c*a;

}
if (j==i-j-1) x[j]-=c*x[j];

}
}

After calculating the amplitudes ha[n] they must be normalized and multiplied with harmAmpl to find the harmonic line
amplitudes:

sum (ha[n]^2) = power of harmonic tone

This is realized as follows:

p=0.0;
for (i=0; i<numHarmLine; i++)

p += ha[i]*ha[i];
s = sqrt(harmPwr / p);
for (i=0; i<numHarmLine; i++)

hLineAmpl[n] = ha[i] * s;

The optional phase information is decoded as follows:

for (i=0; i<numHarmLine; i++) {
if (harmPhaseAvail[i]) {

hStartPhase[i] = 2*pi*(harmPhase[i]+0.5)/(2^phasebits)-pi;
hStartPhaseAvail[i] = 1;

}
else

hStartPhaseAvail[i] = 0;
}

7.5.1.1.3.2� Enhanced decoder

In this mode, the harmonic line parameters decoded by the basic decoder are refined and also line phases are decoded
using the information contained in HARMenhaPara() as follows:

For the first maximum 10 harmonic lines i

i = 0 .. min(numHarmLine,10)-1

the enhanced harmonic line parameters are refined using the basic harmonic line parameters and the data in the
enhancement bitstream:

40

hLineAmplEnh[i] = hLineAmpl[i]
hLineFreqEnh[i] = hLineFreq[i] *

(1+((harmFreqEnh[i]+0.5)/(2^fEnhbits[i])-0.5)*(hFreqRelStep-1))

where hFreqRelStep is the ratio of two neighboring fundamental frequency quantizer steps:

hFreqRelStep = exp(log(4000/20)/2048))

For both line types the phase is decoded from the enhancement bitstream:

hLinePhaseEnh[i] = 2*pi*(harmPhase[i]+0.5)/(2^phasebits)-pi

7.5.1.2� Individual line decoder

7.5.1.2.1� Tool description

The individual line basic bitstream decoder reconstructs the line parameters frequency, amplitude, and envelope from the
bitstream. The enhanced bitstream decoder reconstructs the line parameters frequency, amplitude, and envelope with
finer quantization and additionally reconstructs the line parameters phase.

7.5.1.2.2� Definitions

prevNumLine Number of individual lines in previous frame.
lineContFlag[i] Flag indicating line i in current frame has continued from prev. frame.
t_max Envelope parameter: time of maximum.
r_atk Envelope parameter: attack rate.
r_dec Envelope parameter: decay rate.
ampl[i] Amplitude of i-th individual line.
freq[i] Frequency of i-th individual line (in Hz).
linePred[i] Index of predecessor in previous frame of i-th individual line in current frame.
t_maxEnh Enhanced envelope parameter: time of maximum.
r_atkEnh Enhanced envelope parameter: attack rate.
r_decEnh Enhanced envelope parameter: decay rate.
amplEnh[i] Enhanced amplitude of i-th individual line.
freqEnh[i] Enhanced frequency of i-th individual line (in Hz).
phaseEnh[i] Phase of i-th individual line (in rad).
linebits Number of bits for numLine.
tmbits Number of envTmax bits.
atkbits Number of encRatk bits.
decbits Number of envRdec bits.
tmEnhbits Number of envTmaxEnha bits.
atkEnhbits Number of encRatkEnha bits.
decEnhbits Number of envRdecEnha bits.
fEnhbits[i] Number of lineFreqEnha[i] and harmFreqEnha[i] bits.
phasebits Number of linePhase and harmPhase bits.

7.5.1.2.3� Decoding process

7.5.1.2.3.1� Basic decoder

The basic decoder reconstructs the line parameters from the data contained in HILNbasicFrame() and INDIbasicPara() in
the following way:

For each frame, first the number of individual lines encoded in this frame is read from HILNbasicFrame():

numLine

Then the frame envelope flag is read from HILNbasicFrame():

41

envFlag

If envFlag = 1 then the 3 envelope parameters t_max, r_atk, and r_dec are decoded from HILNbasicFrame():

t_max = (envTmax+0.5)/(2^tmbits)
r_atk = tan(pi/2*max(0,envRatk-0.5)/(2^atkbits-1))/0.2
r_dec = tan(pi/2*max(0,envRdec-0.5)/(2^decbits-1))/0.2

These envelope parameters are valid for the harmonic lines as well as for the individual lines. Thus the envelope
parameters envTmax, envRatk, envRdec must be dequantized if present, even if numLine == 0.

For each line k of the previous frame

k = 0 .. prevNumLine-1

the previous line continuation flag is read from HILNbasicFrame():

prevLineContFlag[k]

If prevLineContFlag[k] = 1 then line k of the previous frame is continued in the current frame. If prevLineContFlag[k] = 0
then line k of the previous frame is not continued.

In the current frame, first the parameters of all continued lines are encoded followed by the parameters of the new lines.
Therefore, the line continuation flag and the line predecessor are determined before decoding the line parameters:

i=0
for (k=0;k<prevNumLine;k++)

if (prevLineContFlag[k]) {
linePred[i] = k
lineContFlag[i++] = 1

}
while (i<numLine)

lineContFlag[i++]=0

lastNLFreq = 0

For each line i of the current frame

i = 0 .. numLine-1

the line parameters are decoded from INDIbasicPara() now.

If envFlag = 1 then the line envelope flag is read from INDIbasicPara():

lineEnvFlag[i]

If lineContFlag[i] = 0 then the parameters of a new line are decoded from INDIbasicPara():

if (numLine-1-i < 7)
ILFreqInc[i] = SDCdecode (maxFindex-lastNLFreq, sdcILFTable[numLine-1-i]);

else
ILFreqInc[i] = SDCdecode (maxFindex-lastNLFreq, dcILFTable[7]);

ILFreqIndex[i] = lastNLFreq + DILFreq[i]
lastNLFreq = ILFreqIndex[i]
if (HILNquantMode) {

ILAmplRel[i] = SDCdecode (50, sdcILATable);
ILAmplIndex[i] = maxAmplIndex + ILAmplRel[i];

}
else {

ILAmplRel[i] = SDCdecode (25, sdcILATable);
ILAmplIndex[i] = maxAmplIndex + 2*ILAmplRel[i];

}

42

If lineContFlag[i] = 1 then the parameters of a continued line are decoded from INDIbasicPara() based on the amplitude
and frequency index of its predecessor in the previous frame:

ILFreqIndex[i] = prevILFreqIndex[linePred[i]] + DILFreq[i]
ILAmplIndex[i] = prevILAmplIndex[linePred[i]] + DILAmpl[i]

The amplitudes and frequencies of the individual lines are now dequantised from the indices:

for (i=0; i<numLine; i++) {
ampl[i] = 32768 * pow(10, -1.5*(ILAmplIndex+0.5)/20);
if (ILFreqIndex<160)

freq[i] = (ILFreqIndex+0.5) * 3.125;
else

freq[i] = 500 * exp(0.00625 * (ILFreqIndex+0.5-160));
}

The line parameters indices are stored for decoding the line parameters of the next frame:

prevNumLine = numLine
for (i=0; i<prevNumLine; i++) {

prevILFreqIndex[i] = ILFreqIndex[i]
prevILAmplIndex[i] = ILAmplIndex[i]

}

If the decoding process starts with an arbitrary frame of a bitstream all individual lines which are marked in the bitstream as
to be continued from previous frames which have not been decoded are to be muted.

If data from total of numLayer extension layers is available to the basic decoder, the values of layNumLine[numLayer] and
layPrevNumLine[numLayer] are to be used instead of numLine and prevNumLine respectively. The values of
lineContFlag[i] and linePred[i] as determined by the bitstream syntax description are to be used.

The optional phase information is decoded as follows:

for (i=0; i<numLine; i++) {
if (linePhaseAvail[i]) {

startPhase[i] = 2*pi*(linePhase[i]+0.5)/(2^phasebits)-pi;
startPhaseAvail[i] = 1;

}
else

startPhaseAvail[i] = 0;
}

7.5.1.2.3.2� Enhanced decoder

The enhanced decoder refines the line parameters obtained from the basic decoder and also decodes the line phases.
The additional information is contained in bitstream element INDIenhaPara() and evaluated in the following way:

First, all operations of the basic decoder have to be carried out in order to allow correct decoding of parameters for
continued lines.

If envFlag = 1 then the enhanced parameters t_maxEnh, r_atkEnh, and r_decEnh are decoded using the envelope data
contained in HILNbasicFrame() and HILNenhaFrame():

t_maxEnh = (envTmax+(envTmaxEnh+0.5)/(2^tmEnhbits))/(2^tmbits)
if (envRatk==0)

r_atkEnh = 0
else

r_atkEnh = tan(pi/2*(envRatk-1+(envRatkEnh+0.5)/(2^atkEnhbits))/
(2^atkbits-1))/0.2

if (envRdec==0)

43

r_decEnh = 0
else

r_decEnh = tan(pi/2*(envRdec-1+(envRdecEnh+0.5)/(2^decEnhbits))/
(2^decbits-1))/0.2

For each line i of the current frame

i = 0 .. numLine-1

the enhanced line parameters are obtained by refining the parameters from the basic decoder with the data in
INDIenhaPara():

amplEnh[i] = ampl[i]
if (fEnhbits[i]!=0) {

if (ILFreqIndex<160)
freqEnh[i] = (ILFreqIndex+0.5 +

((lineFreqEnh[i]+0.5)/(2^fEnhbits[i])-0.5)) * 3.125;
else

freqEnh[i] = 500 * exp(0.00625 * (ILFreqIndex+0.5-160 +
((lineFreqEnh[i]+0.5)/(2^fEnhbits[i])-0.5)));

}
else

freqEnh[i] = freq[i]

For both line types the phase is decoded from the enhancement bitstream:

phaseEnh[i] = 2*pi*(linePhase[i]+0.5)/(2^phasebits)-pi

7.5.1.3� Noise decoder

7.5.1.3.1� Tool description

This tool decodes the noise parameters transmitted in the bitstream.

7.5.1.3.2� Definitions

numNoisePara Number of noise parameters.
noiseLPCPara[i] Noise LPC parameter i (for noise spectrum).
noiseAmpl Harmonic tone amplitude.
noisePwr Harmonic tone power.
noiseT_max Noise envelope parameter: time of maximum.
noiseR_atk Noise envelope parameter: attack rate.
noiseR_dec Noise envelope parameter: decay rate.

7.5.1.3.3� Decoding process

7.5.1.3.3.1� Basic decoder

If the „noiseFlag“ is set and thus NOISEbasicPara() data is available in the current frame, the parameters of the „noise“
signal component are decoded and dequantized as follows:

The noise is represented by its power and a set of LPC-Parameters.

First the noiseNumPara LAR parameters are reconstructed. Prediction from the previous frame is used when
noiseContFlag is set.

float noiseLPCMean[25] = { 2.0, -0.75, 0.0, 0.0, 0.0, ... , 0.0};

for (i=0; i<numNoisePara; i++) {
if (i<prevNumNoisePara && noiseContFlag)

pred = noiseLPCMean[i] + (prevNoiseLPCPara[i]-noiseLPCMean[i])*0.75;

44

else
pred = noiseLPCMean[i];

noiseLPCPara[i] = pred + noiseLAR[i];
}

prevNumNoisePara = numNoisePara;

The amplitude and power of the noise is dequantised as follows:

noiseAmpl = 32768 * pow(10, -1.5*(noiseAmplIndex+0.5)/20);
noisePwr = noiseAmpl*noiseAmpl;

If noiseEnvFlag == 1 then the noise envelope parameters noiseEnvTmax, noiseEnvRatk, and noiseEnvRdec are
dequantized into noiseT_max, noiseR_atk, and noiseR_dec in the same way as described for the individual line decoder
(see Clause 7.5.1.2.3.1).

7.5.1.3.3.2� Enhanced decoder

Since there is no enhancement data for noise components, there is no specific enhanced decoding mode for noise
parameters. If noise is to be synthesized with enhancement data present for the other components, the basic noise
parameter decoder can be used. However it has to be noted that if the HILN decoder is used as a core in a scalable coder
no noise signal must be synthesized for the signal which is given to the enhancement decoder.

7.5.1.4� Harmonic and individual line synthesizer

7.5.1.4.1� Tool description

This tool synthesizes the audio signal according to the harmonic and individual line parameters decoded by the
corresponding decoder tools. It includes the combination of the harmonic and individual lines, the basic synthesizer and
the enhanced synthesizer. To obtain the complete decoded audio signal, the output signal of this tool is added to the
output signal of the noise synthesizer as described in Clause 7.5.1.5.

7.5.1.4.2� Definitions

totalNumLine Total number of lines in current frame to be synthesized (individual and harmonic).
T Frame length in seconds.
N Frame length in samples.
env(t) Amplitude envelope function in current frame.
a(t) Instantaneous amplitude of line being synthesized.
phi(t) Instantaneous phase of line being synthesized.
x(t) Synthesized output signal.
x[n] Sampled synthesized output signal.
previousEnvFlag Envelope flag in previous frame.
previousT_max Envelope parameter t_max in previous frame.
previousR_atk Envelope parameter r_atk in previous frame.
previousR_dec Envelope parameter r_dec in previous frame.
previousEnv(t) Amplitude envelope function in previous frame.
previousTotalNumLine Total number of lines in previous frame.
previousAmpl[k] Amplitude of k-th line in previous frame.
previousFreq[k] Frequency of k-th line in previous frame (in Hz).
previousPhi[k] End phase of k-th line in previous frame (in rad).
previousT_maxEnh Enhanced envelope parameter t_max in previous frame.
previousR_atkEnh Enhanced envelope parameter r_atk in previous frame.
previousR_decEnh Enhanced envelope parameter r_dec in previous frame.
previousAmplEnh[k] Enhanced amplitude of k-th line in previous frame.
previousFreqEnh[k] Enhanced frequency of k-th line in previous frame (in Hz).
previousPhaseEnh[k] Phase of k-th line in previous frame (in rad).

45

7.5.1.4.3� Synthesis process

7.5.1.4.3.1� Combination of harmonic and individual lines

For the synthesis of the harmonic lines the same synthesis technique as for the individual lines is used.

If no harmonic component is decoded for the following steps numHarmLine has to be set to zero.

Otherwise the parameters of the harmonic lines are appended to the list of individual line parameters as decoded by the
individual line decoder:

for (i=0; i<numHarmLine; i++) {
freq[numLine+i] = hLineFreq[i]
ampl[numLine+i] = hLineAmpl[i]
linePred[numLine+i] = (harmPred) ? prevNumLine+i+1 : 0
lineEnvFlag[numLine+i] = harmEnv
startPhase[numLine+i] = hStartPhase[i]
startPhaseAvail[numLine+i] = hStartPhaseAvail[i]

}

Thus the total number of line parameters passed to the „individual line“ synthesizer is:

totalNumLine = numLine + numHarmLine

Depending on the value of HILNcontMode it is possible to connect lines in adjacent frames in order to avoid phase
discontinuities in the case of transitions to and from harmonic lines (HILNcontMode == 0) or additionally from individual
lines to individual lines for which the continue bit lineContFlag in the bitstream was not set by the encoder (HILNcontMode
== 1). This additional line continuation as described below can also be completely disabled (HILNcontMode == 2).

For each line i = 0 .. totalNumLine-1 of the current frame that has no predecessor, the best-fitting line j of the previous
frame having no successor and with the combination meeting the requirements specified by HILNcontMode as described
above is determined by maximizing the following measure q:

df = freq[i] / prev_freq[j]
df = max(df, 1/df)
da = ampl[i] / prev_ampl[j]
da = max(da, 1/da)
q = (1 - (df-1)/(dfCont-1)) * (1 - (da-1)/(daCont-1))

where dfCont = 1.05 and daCont = 4 are the maximum relative frequency and amplitude changes permitted. For additional
line continuations determined in this way, the line predecessor information is updated:

linePred[i] = j+1

If there is not at least one predecessor with df < dfCont and da < daCont linePred[i] remains unchanged.

For the enhanced synthesizer, the enhanced harmonic (up to maximum of 10) and individual line parameters are
combined as follows:

for (i=0; i<min(10,numHarmLine); i++) {
freqEnh[numLine+i] = hLineFreqEnh[i]
amplEnh[numLine+i] = hLineAmplEnh[i]
phaseEnh[numLine+i] = hLinePhaseEnh[i]
linePred[numLine+i] = (harmPred) ? prevNumLine+i+1 : 0
lineEnvFlag[numLine+i] = harmEnv

}

Thus the total number of line parameters passed to the enhanced „individual line“ synthesizer, if the HILN decoder is used
as a core in a scalable coder, is:

totalNumLine = numLine + min(10,numHarmLine)

46

Since phase information is available for all of these lines , no line continuation is introduced for the enhanced synthesizer.

7.5.1.4.3.2� Basic synthesizer

The basic synthesizer reconstructs one frame of the audio signal. Since the line parameters encoded in a bitstream frame
are valid for the middle of the corresponding frame of the audio signal, the Individual Lines Synthesizer generates the one-
frame long section of the audio signal that starts in the middle of the previous frame and that ends in the middle of the
current frame.

In the following, the calculation of the synthesized output signal

x(t)

for 0 <= t < T is described. The time discrete version is defined as

x[n] = x((n+0.5)*(T/N))

for 0 <= n < N,where T is the frame length in seconds, N is the number of samples in a frame and N/T is the sampling
frequency in Hz as given by HILNsampleRateCode. The value of N/T might be different from the sampling frequency of the
audio signal being synthesized which is specified by SamplingFrequency in the AudioSpecificConfig().

Some parameters of the previous frame (names starting with "previous“) are taken out of a frame to frame memory which
has to be reset before decoding the first frame of a bitstream.

First the envelope functions previousEnv(t) and env(t) of the previous and current frame are calculated according to the
following rules:

If envFlag = 1 then the envelope function env(t) is derived from the envelope parameters t_max, r_atk, and r_dec. With T
being the frame length, env(t) is calculated for -T/2 <= t < 3/2*T:

for -1/2 <= t/T < t_max
env(t) = max(0,1-(t_max-t/T)*r_atk)

for t_max <= t/T < 3/2)
env(t) = max(0,1-(t/T-t_max)*r_dec)

If envFlag = 0 then a constant envelope function env(t) is used:

env(t) = 1

Accordingly previousEnv(t) is calculated from the parameters previousT_max, previousR_atk, previousR_dec and
previousEnvFlag.

The envelope parameters transmitted in case of envFlag == 1 are valid for the harmonic lines as well as for the individual
lines. Thus the envelope functions always must be generated, even if all lineEnvFlag[i] == 0.

Before the synthesis is performed, the accumulator x(t) for the synthesized audio signal is cleared:

for 0 <= t <T
x(t) = 0

The lines i continuing from the previous frame to the current frame

all i=0 .. totalNumLine-1 with lineContFlag[i] = 1

are synthesized as follows for 0 <= t < T:

k = linePred[i]
ap(t) = previousAmpl[k]
if (previousEnvFlag[k] = 1)

ap(t) *= previousEnv(t+T/2)
ac(t) = ampl[k]
if(envFlag[i] = 1)

47

ac(t) *= env(t-T/2)
short_x_fade = (previousEnvFlag && !(previousR_atk < 5 &&

(previousT_max > 0.5 || previousR_dec < 5))) ||
(envFlag && !(r_dec < 5 && (t_max < 0.5 || r_atk < 5)))

if (short_x_fade = 1) {
if (0 <= t < 7/16*T)

a(t) = ap(t)
if (7/16*T <= t < 9/16*T)

a(t) = ap(t) + (ac(t)-ap(t))*(t/T-7/16)*8
if (9/16*T <= t < T)

a(t) = ac(t)
}
else

a(t) = ap(t) + (ac(t)-ap(t))*t/T
phi[i](t) = previousPhi[k]+2*pi*previousFreq[k]*t+

2*pi*(freq[i]-previousFreq[k])/(2*T)*t^2
x(t) += a(t)*sin(phi[i](t))

The lines i starting in the current frame

all i=0 .. totalNumLine-1 with lineContFlag[i] = 0

are synthesized as follows for 0 <= t <T:

if (envFlag && !(r_dec < 5 && (t_max < 0.5 || r_atk < 5))) {
if (0 <= t < 7/16*T)

fade_in(t) = 0
if (7/16*T <= t < 9/16*T)

fade_in(t) = 0.5 - 0.5*cos((8*t/T-7/2)*pi)
if (9/16*T <= t < T)

fade_in(t) = 1
}
else

fade_in(t) = 0.5-0.5*cos(t/T*pi)
a(t) = fade_in(t)*ampl[i]
if (envFlag[i] = 1)

a(t) *= env(t-T/2)
if (startPhaseAvail[i])

start_phi[i] = startPhase[i]
else

start_phi[i] = random(2*pi)
phi[i](t) = start_phi[i] + 2*pi*freq[i]*(t-T)
x(t) += a(t)*sin(phi[i](t))

random(x) is a function returning a random number with uniform distribution in the interval

0 <= random(x) < x

The lines k ending in the previous frame

all k=0 .. previousTotalNumLine-1 with prevLineContFlag[k] = 0

are synthesized as follows for 0 <= t <T:

if (previousEnvFlag && !(previousR_atk < 5 &&
(previousT_max > 0.5 || previousR_dec < 5))) {

if (0 <= t < 7/16*T)
fade_out(t) = 1

if (7/16*T <= t < 9/16*T)
fade_out(t) = 0.5 + 0.5*cos((8*t/T-7/2)*pi)

if (9/16*T <= t < T)

48

fade_out(t) = 0
}
else

fade_out(t) = 0.5+0.5*cos(t/T*pi)
a(t) = fade_out(t)*previousAmpl[k]
if (previousEnvFlag[k] = 1)

a(t) *= previousEnv(t+T/2)
phi(t) = previousPhi[k]+2*pi*previousFreq[k]*t
x(t) += a(t)*sin(phi(t))

If the instantaneous frequency of a line is above half the sampling frequency, i.e.

d phi(t) / dt >= pi*N/T

it is not synthesized to avoid aliasing distortion.

Parameters needed in the following frame are stored in the frame to frame memory:

previousEnvFlag = envFlag
previousT_max = t_max
previousR_atk = r_atk
previousR_dec = r_dec
previousTotalNumLine = totalNumLine
for (i=0; i<totalNumLine; i++) {

previousFreq[i] = freq[i]
previousAmpl[i] = ampl[i]
previousPhi[i] = fmod(phi[i](T),2*pi)

}

fmod(x,2*pi) is a function returning the 2*pi modulus of x.

Due to the phase continuation of this decoder implementation, the speed of the decoded signal can be changed by simply
changing the frame length without any other modifications. The relation of the encoder frame length and the selected
decoder frame length directly corresponds to a speed factor.

In a similar way, the pitch of the decoded signal can be varied without affecting the frame length and without causing
phase discontinuities. The pitch change is performed by simply multiplying each frequency parameter with a pitch factor
before it is used in the synthesis.

7.5.1.4.3.3� Enhanced synthesizer

The enhanced synthesizer is based on the basic synthesizer but evaluates also the line phases for reconstructing one
frame of the audio signal. Since the line parameters encoded in a bitstream frame and the corresponding enhancement
frame are valid for the middle of the corresponding frame of the audio signal, the Individual Lines Synthesizer generates
the one frame long section of the audio signal that starts in the middle of the previous frame and ends in the middle of the
current frame.

Some parameters of the previous frame (names starting with „previous“) are taken out of a frame to frame memory which
has to be reset before decoding the first frame of a bitstream.

First the envelope functions previousEnv(t) and env(t) of the previous and current frame are calculated according to the
following rules:

If envFlag = 1 then the envelope function env(t) is derived from the envelope parameters t_maxEnh, r_atkEnh, and
r_decEnh. With T being the frame length, env(t) is calculated for -T/2 <= t < 3/2*T:

for -1/2 <= t/T < t_maxEnh
env(t) = max(0,1-(t_maxEnh-t/T)*r_atkEnh)

for t_maxEnh <= t/T < 3/2
env(t) = max(0,1-(t/T-t_maxEnh)*r_decEnh)

If envFlag = 0 then a constant envelope function env(t) is used:

49

env(t) = 1

Accordingly previousEnv(t) is calculated from the parameters previousT_maxEnh, previousR_atkEnh, previousR_decEnh
and previousEnvFlag.

The envelope parameters transmitted in case of envFlag == 1 are valid for the harmonic lines as well as for the individual
lines. Thus the envelope functions always must be generated, even if all lineEnvFlag[i] == 0.

Before the synthesis is performed, the accumulator x(t) for the synthesized audio signal is cleared:

for 0 <= t < T
x(t) = 0

All lines i in the in the current frame

all i =0 .. totalNumLine-1

are synthesized as follows for 0 <= t < T:

if (envFlag && !(r_decEnh < 5 && (t_maxEnh < 0.5 || r_atkEnh < 5))) {
if (0 <= t < 7/16*T)

fade_in(t) = 0
if (7/16*T <= t < 9/16*T)

fade_in(t) = 0.5 - 0.5*cos((8*t/T-7/2)*pi)
if (9/16*T <= t < T)

fade_in(t) = 1
}
else

fade_in(t) = 0.5-0.5*cos(t/T*pi)
a(t) = fade_in(t)*amplEnh[i]
if (envFlag[i] = 1)

a(t) *= env(t-T/2)
phi(t) = 2*pi*freqEnh[i]*(t-T)+phaseEnh[i]
x(t) += a(t)*sin(phi(t))

The lines k in the previous frame

all k=0 .. previousTotalNumLine-1

are synthesized as follows for 0 <= t < T:

if (previousEnvFlag && !(previousR_atkEnh < 5 &&
(previousT_maxEnh > 0.5 || previousR_decEnh < 5))) {

if (0 <= t < 7/16*T)
fade_out(t) = 1

if (7/16*T <= t < 9/16*T)
fade_out(t) = 0.5 + 0.5*cos((8*t/T-7/2)*pi)

if (9/16*T <= t < T)
fade_out(t) = 0

}
else

fade_out(t) = 0.5+0.5*cos(t/T*pi)
a(t) = fade_out(t)*previousAmplEnh[k]
if (previousEnvFlag[k] = 1)

a(t) *= previousEnv(t+T/2)
phi(t) = 2*pi*previousFreqEnh[k]*t+previousPhaseEnh[i]
x(t) += a(t)*sin(phi(t))

If the instantaneous frequency of a line is above half the sampling frequency, i.e.

d phi(t) / dt >= pi*N/T

50

it is not synthesized to avoid aliasing distortion.

Parameters needed in the following frame are stored in the frame to frame memory:

previousEnvFlag = envFlag
previousT_maxEnh = t_maxEnh
previousR_atkEnh = r_atkEnh
previousR_decEnh = r_decEnh
previousTotalNumLine = totalNumLine
for (i=0; i<totalNumLine; i++) {

previousFreqEnh[i] = freqEnh[i]
previousAmplEnh [i] = amplEnh[i]
previousPhaseEnh [i] = phaseEnh [i]

}

7.5.1.5� Noise synthesizer

7.5.1.5.1� Tool description

This tool synthesizes the noise part of the output signal based on the noise parameters decoded by the noise decoder.
Finally the noise signal is added to the output signal of the harmonic and individual lines synthesizer (Clause 7.5.1.4) to
obtain the complete decoded audio signal

7.5.1.5.2� Definitions

N Frame length in samples.
noiseWin[i] Window for noise overlap-add.
noiseEnv[i] Envelope for noise component in current frame.
n[i] Synthesized noise signal in current frame.
x[i] Sampled synthesized output signal.
prev_n[i] Synthesized noise signal in previous frame.
prev_noiseWin[i] Envelope for noise component in previous frame.

7.5.1.5.3� Synthesis process

7.5.1.5.3.1� Basic synthesizer

If noise parameters are transmitted for the current frame, a noise signal with a spectral shape as described by the noise
parameters decoded from the bitstream is synthesized and added to the audio signal generated by the harmonic and
individual line synthesizer.

The noise is represented by its power and a set of LPC-Parameters. As described in the harmonic tone decoder
(Subclause 6.1.3.1), the noise LPC parameters are converted to the reflection coefficients r[n] and to the time response
h[n]:

for (n=0; n<numNoisePara; n++)
r[n] = (exp(noiseLPCPara[n]) - 1) / (exp(noiseLPCPara[n]) + 1)

After this the reflection coefficients r[n] are converted to the time response h[n] using the C function

void Convert_k_to_h (float *x, int N)

given in Subclause 6.1.3.1.

Now the noise signal x[n] is generated by applying the LPC synthesis IIR filter to a white noise represented by random
numbers w[i]. The power of this zero-mean white noise is denoted pw. For a noise with uniform distribution in [-1,1] the
power is

pw = 1/3

To achieve the required noise signal power, the following scaling factor s is required:

51

s = 1;
for (n=0; n<numNoisePara; n++)

s *= 1-r[n]*r[n]
s = noiseAmpl / sqrt(pw*s)

Then the white noise w[i] is IIR filtered to obtain the synthesized noise signal x[n]

for (i=startup; i<N; i++)
x[n] = s * w[n] + h[0]*x[n-1] + h[1]*x[n-2] + ... + h[numNoisePara-1]*x[n-numNoisePara]

To ensure that the IIR filter can reach a sufficiently steady state, a startup phase is used:

startup = -numNoisePara

If decoded with a pitch change or with a different sample rate than the encoder, a resample operation must be applied to
the signal x:

resampleFactor = decoderSampleRate / (sampleRate * pitchFactor);

where e.g. pitchFactor of 2 indicates that this signal is synthesized at twice its original pitch.

The resampling can be realized by applying two lowpass-FIR-filter operations to the signal x and linearly interpolating
between these two values.

if (resampleFactor>1)
fc = 1

else
fc = resampleFactor

The following function calculates the time response of an appropriate lowpass filter with an order of 8 and an oversampling
factor of 4. The cutoff frequency is fc.

void GenLPFilter(float *h,double fc)
{

double x,f;

h[0]=(float) fc;
for (n=1; n<32; n++)
{

x=n*PI/4.0;
h[n]=(float) ((0.54+0.46*cos(0.125*x))*sin(fc*x)/x);

}
}

To perform the FIR filter operation the following C function can be used. The parameters are the signal, the time response
(as returned by the function above) and the position of the sampling point. The position is given as the difference between
the nearest sample position prior to the desired sample position (x[7]) and the desired sample position. Therefore 0 <= pos
< 1. The interpolation is done between x[7] and x[8], the returned value represents a sample position of 7+pos.

float LPInterpolate(float *x,float *h,double pos)
{

long j;
double s,t;

pos*=4.0;
j=(long) pos;
pos-=(double) j;

s=t=0.0;
j=32-j;

if (j==32) { t=h[31]*(*x); x++; j-=4; }

52

while (j>0)
{

s+=h[j]*(*x);
t+=h[j-1]*(*x);
x++;
j-=4;

}
j=-j;
while (j<32-1)
{

s+=h[j]*(*x);
t+=h[j+1]*(*x);
x++;
j+=4;

}
if (j<32) s+=h[j]*(*x);

return (float) (s+pos*(t-s));
}

For smooth cross-fade of the noise signal at the boundary between two adjacent frames, the following window is used for
this overlap-add operation:

noiseWin[i] = 0 if i < N*3/8
noiseWin[i] = sin(pi/2 * (i+0.5)/(N*2/8)) if N*3/8 < i < N*5/8
noiseWin[i] = 1 if i > N*5/8
prev_noiseWin[i] = noiseWin[N-i]

Finally the noise signal is added to the previously synthesized signal x[i] and the second half of the generated noise signal
is stored in a frame to frame memory for overlap-add:

for (i=0; i<N; i++) {
x[i] += n[i]*noiseWin[i] + prev_n[i]*prev_noiseWin[i]
prev_n[i] = n[N+i]

}

Pitch and speed change functionalities are implemented similar as in the basic line synthesizer: To change the pitch of the
noise, the filtered noise signal is resampled as described. To change the speed, a correspondingly increased or decreased
frame length N is used for the synthesis.

7.5.1.5.3.2� Enhanced synthesizer

Since there is no enhancement data for noise components, there is no specific enhanced synthesizer mode for noise
components. If noise is to be synthesized with enhancement data present for the other components, the basic noise
synthesizer decoder can be used. However it has to be noted that if the HILN decoder is used as a core in a scalable
coder no noise signal must be synthesized for the signal which is given to the enhancement decoder.

7.5.2� Integrated parametric coder

The integrated parametric coder can operate in four different modes as shown in Table 7.1.1. PARAmodes 0 and 1
represent the fixed HVXC and HILN modes. PARAmode 2 permits automatic switching between HVXC and HILN
depending on the current input signal type. In PARAmode 3 the HVXC and HILN coders can be used simultaneously and
their output signals are added (mixed) in the decoder.

The integrated parametric coder uses a frame length of 40 ms and a sampling rate of 8 kHz and can operate at 2025 bit/s
or any higher bitrate. Operation at 4 kbit/s or higher is suggested.

7.5.2.1� Integrated parametric decoder

For the „HVXC only“ and „HILN only“ modes the parametric decoder is not modified.

53

In „switched HVXC / HILN“ and „mixed HVXC / HILN“ modes both HVXC and HILN decoder tools are operated
alternatively or simultaneously according to the PARAswitchMode or PARAmixMode of the current frame. To obtain proper
time alignment of both HVXC and HILN decoder output signals before they are added, the difference between HVXC and
HILN decoder delay has to be compensated with a FIFO buffer:

• If HVXC is used in the low delay decoder mode, its output must be delayed for 100 samples (i.e. 12.5 ms).

• If HVXC is used in the normal delay decoder mode, its output must be delayed for 80 samples (i.e. 10 ms).

To avoid hard transitions at frame boundaries when the HVXC or HILN decoders are switched on or off, the respective
decoder output signals are faded in and out smoothly. For the HVXC decoder a 20 ms linear fade is applied when it is
switched on or off. The HILN decoder requires no additional fading because of the smooth synthesis windows utilized in
the HILN synthesizer. It is only necessary to operate the HILN decoder with no new components for the current frame (i.e.
force numLine = 0, harmFlag = 0, noiseFlag = 0) if the current bitstream frame contains no „HILNframe()“.

8� Extension to General Audio Coding

8.1� Decoder Configuration (GASpecificConfig)

8.1.1� Syntax

Syntax No. of bits Mnemonic
GASpecificConfig (samplingFrequencyIndex,

channelConfiguration,
audioObjectType)

{
FrameLength; 1 bslbf
DependsOnCoreCoder; 1 bslbf
if (dependsOnCoreCoder) {

coreCoderDelay; 14 uimsbf
}
ExtensionFlag 1 bslbf
if (! ChannelConfiguration) {

program_config_element ();
}
if (extensionFlag) {

if (AudioObjectType==22) {
numOfSubFrame 5 bslbf
layer_length 11 bslbf

}
If(AudioObjectType==17 || AudioObjectType == 18 ||
AudioObjectType == 19 || AudioObjectType == 20 ||
AudioObjectType == 21 || AudioObjectType == 23){

AacSectionDataResilienceFlag; 1 bslbf
AacScalefactorDataResilienceFlag; 1 bslbf
AacSpectralDataResilienceFlag; 1 bslbf

}
extensionFlag3; 1 bslbf
if (extensionFlag3) {

/* tbd in version 3 */
}

}
}

54

8.1.2� Semantics

Within ISO/IEC 14496-3, subpart 4 (GA) chapter 5 (General Information), section 5.1 (Decoding of GA specific
configuration), sub-section 5.1.1 GA SpecificConfig has to be applied. In addition, the following data_ellements have to be
considered:

numOfSubFrame A 5-bit unsigned integer value representing the number of the sub-frames which are grouped and
transmitted in a super-frame.

layer_length An 11-bit unsigned integer value representing the average length of the large-step layers in bytes.

aacSectionDataResilienceFlag This flag signals a different coding scheme of AAC section data. If codebook 11 is
used, this scheme transmits additional information about the maximum absolute value for spectral
lines. This allows error detection of spectral lines that are larger than this value.

aacScalefactorDataResilienceFlag This flag signals a different coding scheme of the AAC scalefactor data, that is
more resilient against errors as the original one

aacSpectralDataResilienceFlag This flag signals a different coding scheme (HCR) of the AAC spectral data, that is
more resilient against errors as the original one

8.2� Fine Granule Audio

8.2.1� Overview of tools

BSAC stands for bit sliced arithmetic coding and is the name of a noiseless coding kernel that provides a fine grain
scalability and the error resilience in the MPEG-4 General Audio(GA) coder. The BSAC noiseless coding module is an
alternative to the AAC coding module, with all other modules of the AAC-based coder remaining unchanged. The BSAC
noiseless coding is used to make the bitstream scalable and error-resilient and further reduce the redundancy of the
scalefactors and the quantized spectrum

The inputs to the BSAC decoding tool are:

• The noiselessly coded bit-sliced data

• The target layer information to be decoded

The outputs from the BSAC decoding tool are:

• The decoded integer representation of the scalefactors

• The quantized value for the spectra

8.2.2� bitstream syntax

8.2.2.1� Bitstream payload

Table 8-1: Syntax of top level payload for audio object type ER Fine Granule Audio(bsac_payload())

Syntax No. of bits Mnemonic
bsac_payload(lay)
{

for (frm=0; frm<numOfSubFrame; frm++) {
bsac_lstep_element(frm, lay)

}

55

/*
bsac_lstep_element(frm, lay) should be mapped to the fine grain
audio data, bsac_raw_data_block(), for the actual decoding. See
clause “Decoding of payload for audio object type ER Fine
Granule Audio” for more detailed description.*/
}

Table 8-2: Syntax of bsac_lstep_element()

Syntax No. of bits Mnemonic
bsac_lstep_element(frm, lay)
{
Offset=LayerStartByte[frm][lay]

for(i=0;i<LayerLength[frm][lay];i++)
Bsac_stream_byte[frm][offset+i] 8 uimsbf

/*
bsac_stream_byte should be mapped to the fine grain audio
data, bsac_raw_data_block(), for the actual decoding. See
clause “Decoding of payload for audio object type ER Fine
Granule Audio” for more detailed description.
*/
}

Table 8-3: bsac_raw_data_block()

Syntax No. of bits Mnemonic
bsac_raw_data_block()
{
 bsac_base_element()

layer=slayer_size;
while(data_available() && layer<(top_layer+slayer_size)) {

bsac_layer_element(nch, layer)
layer++;

}
byte_alignment()

}

Table 8-4: Syntax of bsac_base_element()

Syntax No. of bits Mnemonic
bsac_base_element()
{

frame_length 11 uimbf
bsac_header()
general_header()
byte_alignment()
for (slayer = 0; slayer < slayer_size; slayer++)

bsac_layer_element(slayer)
}

Table 8-5: Syntax of bsac_header()

Syntax No. of bits Mnemonic
bsac_ header()

56

{
header_length 4 uimbf
sba_mode 1 uimbf
top_layer 6 uimbf
base_snf_thr 2 uimbf

for(ch=0;ch<nch;ch++)
max_scalefactor[ch] 8 uimbf

base_band 5 uimbf

for(ch=0;ch<nch;ch++) {
cband_si_type[ch] 5 uimbf

bsae_scf_model[ch] 3 uimbf
enh_scf_model[ch] 3 uimbf
max_sfb_si_len[ch] 4 uimbf

}
}

Table 8-6: Syntax of general_header()

Syntax No. of bits Mnemonic
general_header ()
{

reserved_bit 1 bslbf
window_sequence 2 uimsbf
window_shape 1 uimsbf
if(window_sequence == EIGHT_SHORT_SEQUENCE) {

max_sfb 4 uimsbf
scale_factor_grouping 7 uimsbf

 } else {
max_sfb 6 uimsbf

 }

pns_data_present 1 uimbf
if (pns_data_present)

pns_start_sfb 6 uimbf

if(nch == 2)
ms_mask_present 2 bslbf

for(ch=0 ch< nch; ch++) {
tns_data_present[ch] 1 bslbf
if(tns_data_present[ch])

tns_data()

ltp_data_present[ch] 1 bslbf
if(ltp_data_present[ch])

ltp_data(last_max_sfb, max_sfb)
 }
}

Table 8-7: Syntax of bsac_layer_element()

Syntax No. of bits Mnemonic
bsac_layer_element(layer)
{

57

layer_cband_si(layer)
layer_sfb_si(layer)

bsac_layer_spectra (layer)
if (terminal_layer[layer]) {

bsac_lower_spectra (layer)
bsac_higher_spectra (layer)

}
}

Table 8-8: Syntax of layer_cband_si()

Syntax No. of bits Mnemonic
layer_cband_si (layer)
{

g = layer_group[layer]
for (ch=0; ch<nch; ch++) {
 for(cband=layer_start_cband[g][layer];

cband<layer_end_cband[g][layer]; cband++) {
acode_cband_si[ch][g][cband] 1..14 bslbf

}
}

}

Table 8-9: Syntax of layer_sfb_si()

Syntax No. of bits Mnemonic
layer_sfb_si (layer)
{

g = layer_group[layer]
for (ch=0; ch<nch; ch++)
for(sfb=layer_start_sfb[layer];sfb<layer_end_sfb[layer];sfb++

) {
if (nch==1) {

if(pns_data_present && sfb >= pns_start_sfb) {
acode_noise_flag[g][sfb] 1 bslbf

}
} else if (stereo_side_info_coded[g][sfb]==0) {

if (ms_mask_present !=2) {
if (ms_mask_present==1) {

acode_ms_used[g][sfb] 1 bslbf
pns_data_present = 0

} else if (ms_mask_present==3) {
acode_stereo_info[g][sfb] 0..4 bslbf

}
if(pns_data_present && sfb>=pns_start_sfb) {

acode_noise_flag_l[g][sfb] 1 bslbf
acode_noise_flag_r[g][sfb] 1 bslbf
if(ms_mask_present==3 &&

stereo_info==3) {
if(noise_flag_l && noise_flag_r){

acode_noise_mode[g][sfb] 2 bslbf
}

}
}

}
stereo_side_info_coded[g][sfb] = 1

}

58

if (noise_flag[ch][g][sfb]) {
if (noise_pcm_flag[ch]==1) {

acode_pcm_noise_energy[ch][g][sfb] 9 bslbf
noise_pcm_flag[ch] = 0

} else {

acode_dpcm_noise_energy_index[ch][g][sfb]
0..14 bslbf

}
} else if (stereo_info[g][sfb]>=2) {

acode_is_position_index[ch][g][sfb] 0..14 bslbf
} else {

acode_scf_index[ch][g][sfb] 1..14 bslbf
}

}
}

Table 8-10: Syntax of bsac_layer_spectra()

Syntax No. of bits Mnemonic
bsac_layer_spectra(layer)
{

g = layer_group[layer]
start_index[g] = layer_start_ index[layer]
end_index[g] = layer_end_ index[layer]
if (layer < slayer_size)

thr_snf = base_snf_thr
Else

thr_snf = 0
bsac_spectral_data (g, g+1, thr_snf, cur_snf)

}

Table 8-11: Syntax of bsac_lower_spectra()

Syntax No. of bits Mnemonic
bsac_lower_spectra(layer)
{

for (g = 0; g < num_window_groups; g++)
start_index[g] = 0
end_index[g] = 0

}

for (play = 0; play < layer; play++)
end_index[-layer_group[play]] = layer_end_index[play]

bsac_spectral_data (0, num_window_groups, 0, unc_snf)
}

Table 8-12: Syntax of bsac_higher_spectra()

Syntax No. of bits Mnemonic
bsac_higher_spectra(layer)
{

for (nlay=layer+1;nlay < top_layer+slayer_size;nlay++){
g = layer_group[nlay]
start_index[g] = layer_start_index[nlay]
end_index[g] = layer_end_index[nlay]

59

bsac_spectral_data (g, g+1, 0, unc_snf)
}

}

Table 8-13: Syntax of bsac_spectral_data ()

Syntax No. of bits Mnemonic
bsac_spectral_data(start_g, end_g, thr_snf, cur_snf)
{

if (layer_data_available()) return

for (snf=maxsnf; snf>thr_snf; snf--)
for (g = start_g; g < end_g; g++)
for (i=start_index[g];i<end_index[g]; i++)
for(ch=0;ch<nch;ch++) {

if (cur_snf[ch][g][i]<snf) continue;

if (!sample[ch][g][i] || sign_is_coded[ch] [g][i])
acod_sliced_bit[ch][g][i] 0..6 bslbf

if (sample[ch][g][i] && !sign_is_coded[ch] [g][i]) {
if (layer_data_available()) return
acod_sign[ch][g][i] 1 bslbf
sign_is_coded[ch][g][i] = 1

}
cur_snf[ch][g][i]--
if (layer_data_available()) return

}
}

8.2.3� General information

8.2.3.1� Decoding of payload for audio object type ER Fine Granule Audio (bsac_ payload())

 Fine grain scalability would create large overhead if one would try to transmit fine grain layers over multiple elementary
streams(ES). So, in order to reduce overhead and implement the fine grain scalability efficiently in current MPEG-4
system, the server can organize the fine grain audio data into the payload by dividing the fine grain audio data into the
large-step layers and concatenating the large step layers of the several sub-frames. Then the payload is transmitted over
ES.

So, , the payload transmitted over ES requires the rearrangement process for the actual decoding.

8.2.3.1.1� Definitions

bsac_payload(lay) Sequnece of bsac_lstep_element()s. Syntactic element of the payload transmitted over
layth layer ES. A bsac_payload(lay) basically consists of several layth layer bitstream,
bsac_lstep_element() of serveral sub-frames.

bsac_lstep_element(frm, lay) Syntactic element for the layth large-step layer bitstream of frmth sub-frame.

bsac_stream_byte[frm][offsett+i] (offset+i)-th byte which is extracted from the payload. After bsac stream bytes are
extracted from all the payloads that have been transmitted to the receiver, these data are
concatenated and saved in the array bsac_stream_byte[frm][] which is the bitstream of
frmth sub-frame. Then, we proceed to decode the concatenated
stream,bsac_stream_byte[frm][] using the syntax of the BSAC fine grain scalability.

60

Help elements:

data_available() function that returns ‘1’ as long as data is available, otherwise ‘0’

LayerStartByte[frm][lay] Start position of layth large-step layer in bytes which is located on frmth sub-frame’s
bitstream. See sub-clause 8.2.3.1.2 for the calculation process of this value.

LayerLength[frm][lay] Length of the large-step layer in bytes which is located on the payload of layth layer ES and
concatenated to frmth sub-frame’s bitstream. See sub-clause 8.2.3.1.2 for the calculation
process of this value.

LayerOffset[frm][lay] Start position of the large-step layer of frmth frame in bytes which is located on the payload
of layth layer ES. See sub-clause 8.2.3.1.2 for the calculation process of this value.

frm index of frame in which bsac stream bytes are saved.

lay index of the large-step layer over which the fine granule audio data is transmitted.

numOfSubFrame Number of the sub-frames which are grouped and transmitted in a super-frame in order to
reduce the transmission overhead.

layer_length Average length of the large-step layers in bytes which are assembled in a payload.

numOfLayer number of the large-step layers which the fine grain audio data is divided into.

8.2.3.1.2� Decoding process

On the sync layer (SL) of MPEG-4 system, an elementary stream is packetized into access units or parts thereof. Such a
packet is called SL packet. Access units are the only semantic entities at the sync layer (SL) of MPEG-4 system that need
to be preserved from end to end. Aceess Units are used as the basic unit for synchronisation which are made up of one or
more SL packets.

The dynamic data for the fine granule audio is transmitted as SL_Packet payload in the base layer and the enhancement
layer Elementary Stream (ES). The dynamic data is made up of the large-step layers of several subsequent sub-frames.

When the SL packets of an AU arrives in the receiver, a sequence of packet is mapped into a payload which is split into
the large step layers, bsac_lstep_layer(frm, lay) for the subsequent sub-frames. And the split layers should be
concatenated with the large-step layers which are transmitted over the other ES.

In the receiver, BSAC data is reconstructed from the payloads as shown in the following figure :

61

0AYLOAD�OF��TH�%3 0AYLOAD�OF��ST�%3

,,�?�

0AYLOAD
�BSAC?PAYLOAD	

3PILTING

3ET�OF
,ARGE�,AYERS

"3!#�DATA
�BSAC?RAW?D
ATA?BLOCK�	�	

$E
INTERLEAVING

�TH�3UB
&RAME �ST�3UB
&RAME .TH�3UB
&RAME

,,�?� ��� ,,.?� ,,�? ,,�? ��� ,,. ,,�?- ,,�?- ��� ,,.?

0AYLOAD�OF�-TH�%3���

���

,,�?� ,,�?�,,�? ��� ,,�?- ,,�? ��� ,,�?- ,,.?� ,,. ��� ,,.?���

where, ,,I?K is the k-th large-step layer of the i-th sub-frame

 (M+1) is the number of the large-step layer to be transmitted (numOfLayer)

 (N+1) is the number of the sub-frame to be grouped in an AU (numOfSubFrame)

1. 1 The large-step layers are split from a payload of kth layer ES which is organized as shown in the following figure :

0AYLOAD

,,�?K ,,�?K ��� ,,.?K

LayerLength[0][k] LayerLength[1][k] LayerLength[N][k]

LayerOffset[0][k] LayerOffset[1][k] LayerOffset[2][k] LayerOffset[N][k] LayerOffset[N+1][k]

2. The split large-step layers are deinterleaved and concatenated to be mapped to the entire fine grain BSAC data. And we
decode the concatenated bitstreams using the syntax (bsac_raw_data_block()) for fine grain scalability to make the
reconstructed signal.

 Some help variables and arrays are needed to describe the re-arranging process of the payload transmitted over ES.
These help variables depend on layer, numOfLayer, numOfSubFrame, layer_length and frame_length and must be
built up for mapping bsac_raw_data_block() of each sub-frame from the payloads. The pseudo code shown below
describes

• how to calculate LayerLength[i][k], the length of the large-step layer which is located on the fine granule audio data,
bsac_raw_data_block() of ith sub-frame.

• how to caluculate LayerOffset[i][k] which indicates the start position of the large-step layer of ith frame which is located
on the payload of the kth ES (bsac_payload())

• how to calculate LayerStartByte[i][k] which indicates the start position of the large-step layer which is located on the fine
granule audio data, bsac_raw_data_block() of ith sub-frame

for (k = 0; k < numOfLayer; k ++) {

LayerStartByte[0][k] = 0;

62

for (i = 0; i < numOfSubFrame; i++) {

if (k == (numOfLayer-1)) {

 LayerEndByte[i][k] = frame_length[i];

 } else {

 LayerEndByte[i][k]=LayerStartByte[i][k] + layer_length[k];

 if (frame_length[i] < LayerEndByte[i][k])

 LayerEndByte [i][k] = frame_length[i];

 }

LayerStartByte[i+1][k] = LayerEndByte[i][k];

LayerLength[i][k] = LayerEndByte[i][k] - LayerStartByte[i][k];

}

}

for (k = 0; k < numOfLayer; k ++) {

LayerOffset[0][k] = 0;

for (i = 0; i < numOfSubFrame; i++) {

LayerOffset[i+1][k] = LayerOffset[i][k] + LayerLength[i][k]

}

}

Where, frame_length[i] is the length of ith frame’s bitstream which is obtained from the syntax element frame_length and
layer_length[i] is the average length of the large-step layers in the payload of ith layer ES and is obtained from Audio
DecoderSpecificInfo.

8.2.3.2� Decoding of a bsac_raw_data_block()

8.2.3.2.1� Definitions

Bit stream elements:

bsac_raw_data_block() block of raw data that contains coded audio data, related information and other data. A
bsac_raw_data_block() basically consists of bsac_base_element() and several
bsac_layer_element().

bsac_base_element() Syntactic element of the base layer bitstream containing coded audio data, related
information and other data.

frame_length the length of the frame including headers in bytes.

bsac_header() contains general information used for BSAC.

header_length the length of the headers including frame_length, bsac_header() and general_header() in
bytes. The actual length is (header_length+7) bytes. However if header_length is 0, it

63

represents that the actual length is smaller than or equal to 7 bytes. And if header_length is
15, it represents that the actual length is larger than or equal to (15+7) bytes and should be
calculated through the decoding of the headers .

sba_mode indicates that the segmented binary arithmetic coding (SBA) scheme is used if this element is
1. Otherwise the general binary arithmetic coding scheme is used.

top_layer top scalability layer index

base_snf_thr significance threshold used for coding the bit-sliced data of the base layer.

base_band indicates the maximum spectral line of the base layer. If the window_sequence is
SHORT_WINDOW, 4*(base_band+1) is the maximum spectral line. Otherwise,
32*(base_band+1) is the maximum spectral line.

max_scalefactor[ch] the maximum value of the scalefactors

cband_si_type[ch] the type of the coding band side-information(si). Using this element, the largest value of
cband_si’s and the arithmetic model for decoding cband_si can be set as shown Table 8.2.1.

base_scf_model[ch] the arithmetic model for decoding the scalefactors in the base layer.

enh_scf_model[ch] the arithmetic model used for decoding the scalefactors in the other enhancement layers.

max_sfb_si_len[ch] maximum length which can be used per channel for coding the scalefactor-band side
information including scalefactor and stereo-related information within a scalefactor band.
This value has a offset(5). The actual maximum length is (max_sfb_si_len+5). This value is
used for determining the bitstream size of each layer.

general_header() contains header data for the General Audio Coding

reserved_bit bit reserved for future use

window_sequence indicates the sequence of windows. See ISO/IEC 14496-3 General Audio Coding.

window_shape A 1 bit field that determines what window is used for the trailing part of this analysis window

max_sfb number of scalefactor bands transmitted per group

scale_factor_grouping A bit field that contains information about grouping of short spectral data

pns_data_present the flag indicating whether the perceptual noise substitution(pns) will be used (1) or not (0).

pns_start_sfb the scalefactor band from which the pcns tool is started.

ms_mask_present this two bit field (see) indicates that the stereo mask is

00 Independent

01 1 bit mask of ms_used is located in the layer sfb side information part (layer_sfb_si()).

10 All ms_used are ones

11 2 bit mask of stereo_info is located in the layer sfb side information part (layer_sfb_si()).

layer_cband_si() contains the coding band side information necessary for Arithmetic encoding/decoding of the
bit-sliced data within a coding band.

layer_sfb_si() contains the side information of a scalefactor band such as the stereo-, the pns and the

64

scalefactor information.bsac_layer_element() Syntactic element of the enhancement
layer bitstream containing coded audio data for a time period of 1024(960) samples, related
information and other data.

bsac_layer_spectra() contains the arithmetic coded audio data of the quantized spectral coefficients which are
newly added to each layer. See clause 8.2.3.2.5 for the new spectral coefficients.

bsac_lower_spectra() contains the arithmetic coded audio data of the quantized spectral coeffients which are lower
than the spectra added to each layer.

bsac_higher_spectra() contains the arithmetic coded audio data of the quantized spectral coeffients which are higher
than the spectra added to each layer.

bsac_spectral_data() contains the arithmetic coded audio data of the quantized spectral coeffients.

Help elements:

data_available() function that returns ‘1’ as long as bitstream is available, otherwise ‘0 ’

nch a bitstream element that identifies the number of the channel.

scalefactor window band term for scalefactor bands within a window. See ISO/IEC 14496-3 General Audio Coding.

scalefactor band term for scalefactor band within a group. In case of EIGHT_SHORT_SEQUENCE and
grouping a scalefactor band may contain several scalefactor window bands of corresponding
frequency. For all other window_sequences scalefactor bands and scalefactor window bands
are identical.

g group index

win window index within group

sfb scalefactor band index within group

swb scalefactor window band index within window

num_window_groups number of groups of windows which share one set of scalefactors. See clause 8.2.3.2.4

window_group_length[g] number of windows in each group. See clause 8.2.3.2.4

bit_set(bit_field,bit_num) function that returns the value of bit number bit_num of a bit_field (most right bit is bit 0)

num_windows number of windows of the actual window sequence. See clause 8.2.3.2.4

num_swb_long_window number of scalefactor bands for long windows. This number has to be selected depending on
the sampling frequency. See ISO/IEC 14496-3 General Audio Coding.

num_swb_short_window number of scalefactor window bands for short windows. This number has to be selected
depending on the sampling frequency. See ISO/IEC 14496-3 General Audio Coding.

num_swb number of scalefactor window bands for shortwindows in case of
EIGHT_SHORT_SEQUENCE, number of scalefactor window bands for long windows
otherwise. See clause 8.2.3.2.4

swb_offset_long_window[swb] table containing the index of the lowest spectral coefficient of scalefactor band sfb for long
windows. This table has to be selected depending on the sampling frequency. See ISO/IEC
14496-3 General Audio Coding.

65

swb_offset_short_window[swb] table containing the index of the lowest spectral coefficient of scalefactor band sfb for
short windows. This table has to be selected depending on the sampling frequency. See
ISO/IEC 14496-3 General Audio Coding.

swb_offset[g][swb] table containing the index of the lowest spectral coefficient of scalefactor band sfb for short
windows in case of EIGHT_SHORT_SEQUENCE, otherwise for long windows. See clause
8.2.3.2.4

layer_group[layer] indicates the group index of the spectral data to be added newly in the scalability layer

layer_start_sfb[layer] indicates the index of the lowest scalefactor band index to be added newly in the scalability
layer

layer_end_sfb[layer] indicates the highest scalefactor band index to be added newly in the scalability layer

layer_start_cband[layer] indicates the lowest coding band index to be added newly in the scalability layer

layer_end_cband[layer] indicates the highest coding band index to be added newly in the scalability layer

layer_start_index[layer] indicates the index of the lowest spectral component to be added newly in the scalability layer

layer_end_index[layer] indicates the index of the highest spectral component to be added newly in the scalability
layer

start_index[g] indicates the index of the lowest spectral component to be coded in the group g

end_index[g] indicates the index of the highest spectral component to be coded in the group g

layer_data_available() function that returns ‘1’ as long as each layer’s bitstream is available, otherwise ‘0 ’. In other
words, this function indicates whether the remaing bitstream of each layer is available or not.

terminal_layer[layer] indicates whether a layer is the terminal layer of a segment which is made up of one or more
scalability layers. If the segmented binary arithmetic coding is not activated, all these values
are always set to 0 except that of the top layer. Otherwise, these values is defined as
described in clause 8.2.4.5.3.

8.2.3.2.2� Decoding process

bsac_raw_data_block

A total BSAC stream, bsac_raw_data_block has the layered structure. First, bsac_base_element is parsed and decoded
which is the bitstream for base scalability layer. Then, bsac_layer_element for the next enhancement layer is parsed and
decoded. bsac_layer_element decoding routine is repeated while the decoded bitstream data is available and layer is
smaller than or equal to the top layer, top_layer.

bsac_base_element

A bsac_base_element is made up of frame_length, bsac_header, general_header and bsac_layer_element().

First, frame_length is parsed from syntax. It represents the length of the frame including headers in bytes.

The syntax elements for the base layer are parsed which are composed of a bsac_header(), a general_header(), a
layer_cband_si(), layer_sfb_si() and bsac_layer_element. bsac_base_element has several bsac_layer_element because
the base layer is split into the several sub-layers for the error resilience of the base layer. The number of the sub-layers,
slayer_size is calculated using the group index and the coding band as shown in clause 8.2.3.2.5.

Recovering a bsac_header

66

BSAC provides a 1-kits/sec/ch fine grain scalability which has the layered structure, one base layer and several
enhancement layers. Base layer contains the general side information for all the layers, the specific side information for the
base layer and the audio data. The general side information is transmitted in the syntax of bsac_header() and
general_header().

bsac_header consists of top_layer, header_length, sba_mode, base_band, max_scalefactor, cband_si_type,
base_scf_model and enh_scf_model. All the bitstream elements are included in the form of the unsigned integer.

First, 4 bit header_length is parsed which represents the length of the headers including frame_length, bsac_header and
general_header in bytes. The length of the headers is (header_length+7)*8. Next, 1bit sba_mode is parsed which
resprents whether the segmented binary arithmetic coding(SBA) is used or the binary arithmetic coding is used.

Next, 6 bit top_layer is parsed which represents the top scalability layer index to be encoded. Next, 2 bit base_snf_thr is
parsed which represents the significance threshold used for coding the bit-sliced data of the base layer.

Next, 8 bit max_scalefactor is parsed which represents the maximum value of the scalefactors. If the number of the
channel is not 1, this value is parsed one more.

Next, 5-bit base_band is parsed which represents minimum spectral line which is coded in the base layer. If the window
sequence is SHORT_WINDOW, 4*(base_band+1) indicates the minimum spectral line. Otherwise 32*(base_band+1)
indicates the minimum spectral line.

 And, 5 bit cband_si_type is parsed which represents the arithmetic model of cband_si and the largest cband_si which
can be decoded as shown in Table 8.2.1. 3 bit base_scf_model and enh_scf_model are parsed which represent the
arithmetic model table for the scalefactors of the base layer and the other enhancement layers, respectively. Next, 4 bit
max_sfb_si_len is pared which represents the maximum length of the scalefactor band side information to be able to
used in each layer. The maximum length is (max_sfb_si_len+5).

Recovering a general_header

The order for decoding the syntax of a bsac_header is:

• get reserved_bit

• get window_sequence

• get window_shape

• get max_sfb

• get scale_factor_grouping if the window_sequence is EIGHT_SHORT_SEQUENCE

• get pns_present

• get pns_start_sfb if present

• get ms_mask_present flag if the number of the channel is 2

• get tns_data_present

• get TNS data if present

• get ltp_data_present

• get ltp data if present

 If the number of the channel is not 1, the decoding of another channel is done as follows :

67

• get tns_data_present

• get TNS data if present

• get ltp_data_present

• get ltp data if present

The process of recovering tns_data and ltp_data is described in ISO/IEC 14496-3 General Audio Coding.

bsac_layer_element

A bsac_layer_element is an enhancement layer bitstream and composed of layer_cband_si(), layer_sfb_si(),
bsac_layer_spectra(), bsac_lower_spectra() and bsac_higher_spectra(). Decoding process of bsac_layer_element is as
follows :

Decode layer_cband_si

Decode layer_sfb_si

Decode bsac_layer_spectra

Decode bsac_lower_spectra

Decode bsac_higher_spectra

Decoding of coding band side information (layer_cband_si)

The spectral coefficients are divided into coding bands which contain 32 quantized spectral coefficients for the noiseless
coding. Coding bands(abbreviation ‘cband’) are the basic units used for the noiseless coding.

cband_si represents the MSB plane and the probability table of the sliced bits within a coding band as shown in Table
8.2.3. Using this cband_si, the bit-sliced data of each coding band are arithmetic-coded.

cband_si is arithmetic_coded with the model which is given in the syntax element cband_si_type as shown in Table 8.2.1.

An overview of how to decode cband_si will be given in clause 8.2.4.4.

Decoding of the scalefactor band side information (layer_sfb_si)

An overview of how to decode layer_sfb_si will be given here. layer_sfb_si is made up of as follows :

Decoding of stereo_info, ms_used or noise_flag.

Decoding of scalefactors

Decoding of stereo_info, noise_flag or ms_used

Decoding process of stereo_info, noise_flag or ms_used is depended on pns_data_present, number of channel,
ms_mask_present.

If pns data is not present, decoding process is as follows :

68

If ms_mask_present is 0, arithmetic decoding of stereo_info or ms_used is not needed.

If ms_mask_present is 2, all ms_used values are ones in this case. So, M/S stereo processing of AAC is done at all
scalefactor band.

If ms_mask_present is 1, 1 bit mask of max_sfb bands of ms_used is conveyed in this case. So, ms_used is arithmetic
decoded. M/S stereo processing of AAC is done according to the decoded ms_used.

If ms_mask_present is 3, stereo_info is arithmetic decoded. stereo_info is two-bit flag per scalefactor band indicating the
M/S coding or Intensity coding mode. If stereo_info is not 0, M/S stereo or intensity stereo of AAC is done with these
decoded data.

If pns data is present and the number of channel is 1, decoding process is as follows :

If the number of channel is 1 and pns data is present, noise flag of the scalefactor bands between pns_start_sfb to
max_sfb is arithmetic decoded. Perceptual noise substitution is done according to the decoded noise flag.

If pns data is present and the number of channel is 2, decoding process is as follows :

If ms_mask_present is 0, noise flag for pns is arithmetic decoded. Perceptual noise substitution of independent mode is
done according to the decoded noise flag.

If ms_mask_present is 2, all ms_used values are ones in this case. So, M/S stereo processing of AAC is done at all
scalefactor band. However, there is no pns processing regardless of pns_data_present flag

If ms_mask_present is 1, 1 bit mask of max_sfb bands of ms_used is conveyed in this case. So, ms_used is arithmetic
decoded. M/S stereo processing of AAC is done according to the decoded ms_used. However, there is no pns
processing regardless of pns_data_present flag

If ms_mask_present is 3, stereo_info is arithmetic decoded. If stereo_info is 1 or 2, M/S stereo or intensity stereo
processing of AAC is done with these decoded data and there is no pns processing. If stereo_info is 3 and scalefactor
band is smaller than pns_start_sfb, out_of_phase intensity stereo processing is done. If stereo_info is 3 and scalefactor
band is larger than or equal to pns_start_sfb, noise flag for pns is arithmetic decoded. And then if the both noise flags of
two channel are 1, noise substitution mode is arithmetic decoded. The perceptual noise is substituted or out_of_phase
intensity stereo processing is done according to the substitution mode. Otherwise, the perceptual noise is substituted
only if noise flag is 1.

The detailed description of how to decode this side information will be given in clause 8.2.4.2.

Decoding of scalefactors

The spectral coefficients are divided into scalefactor bands that contain a multiple of 4 quantized spectral coefficients.
Each scalefactor band has a scalefactor. For all scalefactors the difference to the maximum scalefactor value,
max_scalefactor is arithmetic-coded using the arithmetic model given in Table 8.2.2. The arithmetic model necessary for
coding the differential scalefactors in the base layer is given as a 3-bit unsigned integer in the bitstream element,
base_scf_model. The arithmetic model necessary for coding the differential scalefactors in the other enhancement layers
is given as a 3-bit unsigned integer in the bitstream element, enh_scf_model. The maximum scalefactor value is given
explicitly as a 8 bit PCM in the bitstream element max_scalefactor.

The detailed description of how to decode this side information will be given in clause 8.2.4.3.

Bit-Sliced Spectral Data

69

In BSAC encoder, the absolute values of quantized spectral coefficients is mapped into a bit-sliced sequence. These
slicded bits are the symbols of the arithmetic coding. Every siliced bits are binary arithmetic coded with the proper
probability (arithmetic model) from the lowest-frequency coefficient to the highest-frequency coefficient of the scalability
layer, starting the Most Significant Bit(MSB) plane and progressing to the Least Significant Bit(LSB) plane. The arithmetic
coding of the sign bits associated with non-zero coefficient follows that of the sliced bit when the sliced bit is 1 for the first
time.

The probability value should be defined in order to arithmetic-code the symbols (the sliced bits). Binary probability table is
made up of probability values of the symbol ‘0’. First of all, probability table is selected using cband_si as shown in Table
8.2.3. The probability value is selected among the several values in the selected table according to the context such as the
remaining available bit size and the sliced bits of successive non-overlapping 4 spectral data.

For the case of multiple windows per block, the concatenated and possibly grouped and interleaved set of spectral
coefficients is treated as a single set of coefficients that progress from low to high as described in clause 8.2.3.2.6. This set
of spectral coefficients needs to be de-interleaved after they are decoded. The set of bit-sliced sequence is divided into
coding bands. The probability table index used for encoding the bit-sliced data within each coding band is included in the
bitsteam element cband_si and transmitted starting from the lowest frequency coding band and progressing to the highest
frequency coding band. The spectral information for all scalefactor bands equal to or greater than max_sfb is set to zero.

Decoding the Sliced Bits of the Spectral Data

The spectral bandwidth is increased in proportion to the scalability layer. So, the new spectral data is added to each layer.
First of all, these new spectral data are coded in each layer (bsac_layer_spectra()). The coding process is continued until
the data of each layer is not available or all the sliced bits of the new spectra are coded. The length of the available
bitstream (available_len[]) is initialized at the beginning of each layer as described in clause 8.2.3.2.5. The estimated
length of the codeword (est_cw_len) to be decoded is calculated from the arithmetic decoding process as described in
clause 8.2.3.2.7. After the arithmetic decoding of a symbol, the length of the available bitstream should be updated by
subtracting the estimated codeword length from it. We can detect whether the remaing bitstream of each layer is available
or not by checking the array available_len[].

From the lowest layer to the top layer, the new spectra are arithmetic-coded layer-by-layer in the above first process
(bsac_layer_spectra()). Some sliced bits cannot be coded for lack of the codeword allocated to the layer. After the first
coding process is finished, the current significances (cur_snf) are saved for the secondary coding processes
(bsac_lower_spectra() and bsac_higher_spectra()). The sliced bits which remain uncoded is coded using the saved
significances(unc_snf) in the secondary coding process.

If there remains the available codewords after the first coding, the next symbol to be decoded with these redundant
codewords depends on whether the layer is the terminal layer of a segment or not. If the layer is not a terminal of the
segment, the spectral data of the next layer (bsac_layer_spectra(layer+1)) should be decoded. That is to say, the
redundant length of the layer is added to the available bitstream length (available_len[layer+1]) of the next layer in the first
coding process.

If the layer is a terminal of the segment, the uncoded symbols of the lower spectra in the layers than the current layer are
coded in the secondary coding process (bsac_lower_spectra()). The uncoded symbol of the spectra in the layers higher
than the current layer are coded in the secondary coding process (bsac_higher_spectra()) if the codeword of the layer is
available in spite of having coded the the lower spectra. And the remaining symbols are continuously coded in the layers
whose codeword is available starting from the lowest layer and progressing to the top layer.

Reconstruction of the decoded sample from bit-sliced data

In order to reconstruct the spectral data, a bit-sliced sequence that has been decoded should be mapped into quantized
spectral values. An arithmetic decoded symbol is a sliced bit. A decoded symbol is translated to the bit values of quantized
spectral coeffiecients, as specified in the following pseudo C code:

snf = the significance of the symbol (the sliced bit) to be decoded.

sym = the decoded symbol (the sliced bits of the quantized spectrum)

70

sample[ch][g][i] = buffer for quantized spectral coeffients to be recontructed

scaled_bit = sym << (snf-1)

if (sample[ch][g][i] < 0)

sample[ch][g][i] -= scaled_bit

else

sample[ch][g][i] += scaled_bit

And if the sign bit of the decoded sample is 1, the decoded sample sample[i] has the negative value as follows :

if (sample[ch][g][i] != 0) {

if (sign_bit == 1) sample[ch][g][i] = -sample[ch][g][i]

 }

8.2.3.2.3� Windows and window sequences for BSAC

Quantization and coding is done in the frequency domain. For this purpose, the time signal is mapped into the frequency
domain in the encoder. Depending on the signal, the coder may change the time/frequency resolution by using two
different windows: LONG_WINDOW and SHORT_WINDOW. To switch between windows, the transition windows
LONG_START_WINDOW and LONG_STOP_WINDOW are used. Refer to ISO/IEC 14496-3 General Audio Coding for
more detailed information about the transform and the windows since BSAC has the same transform and windows with
AAC.

8.2.3.2.4� Scalefactor bands, grouping and coding bands for BSAC

Many tools of the AAC/BSAC decoder perform operations on groups of consecutive spectral values called scalefactor
bands (abbreviation ‘sfb’). The width of the scalefactor bands is built in imitation of the critical bands of the human auditory
system. For that reason the number of scalefactor bands in a spectrum and their width depend on the transform length and
the sampling frequency. Refer to ISO/IEC 14496-3 General Audio Coding for more detailed information about the
scalefactor bands and grouping because BSAC has the same process with AAC.

BSAC decoding tool performs operations on groups of consecutive spectral values called coding bands (abbreviation
‘cband’). To increase the efficiency of the noiseless coding, the width of the coding bands is fixed as 32 irrespective of the
transform length and the sampling frequency. In case of sequences which contain LONG_WINDOW, 32 spectral data are
simply grouped into a coding band. Since the spectral data within a group are interleaved in an ascending spectral order in
case of SHORT_WINDOW, the interleaved spectral data are grouped into a coding band. Each spectral index within a
group is mapped into a coding band with a mapping function, cband = spectral_index/32.

Since scalefactor bands and coding bands are a basic element of the BSAC coding algorithm, some help variables and
arrays are needed to describe the decoding process in all tools using scalefactor bands and coding bands. These help
variables must be defined for BSAC decoding. These help variables depend on sampling_frequency, window_sequence,
scalefactor_grouping and max_sfb and must be built up for each bsac_raw_data_block. The pseudo code shown below
describes

• how to determine the number of windows in a window_sequence num_windows

• how to determine the number of window_groups num_window_groups

• how to determine the number of windows in each group window_group_length[g]

• how to determine the total number of scalefactor window bands num_swb for the actual window type

• how to determine swb_offset[g][swb], the offset of the first coefficient in scalefactor window band swb of the window

71

actually used

A long transform window is always described as a window_group containing a single window. Since the number of
scalefactor bands and their width depend on the sampling frequency, the affected variables are indexed with
sampling_frequency_index to select the appropriate table.

fs_index = sampling_frequency_index;

switch(window_sequence) {

case ONLY_LONG_SEQUENCE:

case LONG_START_SEQUENCE:

case LONG_STOP_SEQUENCE:

num_windows = 1;

num_window_groups = 1;

window_group_length[num_window_groups-1] = 1;

num_swb = num_swb_long_window[fs_index];

for(sfb=0; sfb< max_sfb+1; sfb++) {

swb_offset[0][sfb] = swb_offset_long_window[fs_index][sfb];

}

break;

case EIGHT_SHORT_SEQUENCE:

num_windows = 8;

num_window_groups = 1;

window_group_length[num_window_groups-1] = 1;

num_swb = num_swb_short_window[fs_index];

for(i=0; i< num_windows-1; i++) {

if(bit_set(scale_factor_grouping,6-i)) == 0) {

num_window_groups += 1;

window_group_length[num_window_groups-1] = 1;

}

else {

window_group_length[num_window_groups-1] += 1;

}

}

for(g = 0; g < num_window_groups; g++)

72

swb_offset[g][0] = 0;

for(sfb = 0; sfb < max_sfb; sfb++) {

for(g = 0; g < num_window_groups; g++) {

swb_offset[g][sfb] = swb_offset_short_window[fs_index][sfb];

swb_offset[g][sfb] = swb_offset[g][sfb] * window_group_length[g];

}

}

break;

default:

break;

}

8.2.3.2.5� BSAC fine grain scalability layer

BSAC provides a 1-kits/sec/ch fine grain scalability which has the layered bitstream, one BSAC base layer and various
enhancement layers. BSAC base layer is made up of the general side information for all the fine grain layers, the specific
side information for only the base layer and the audio data. BSAC enhancement layers contain the layer side information
and the audio data.

BSAC scalable coding scheme has the scalable band-limit according to the fine grain layer. First of all, the base band-limit
is set. The base band-limit depends on the signal to be encoded and is in the syntax element, base_band. The actually
limited spectral line is 4*(base_band+1) if the window sequence is SHORT_WINDOW. Otherwise, the limited spectral line
is 32*(base_band+1). In order to provide the fine grain scalability, BSAC extends the band-limit according to the fine grain
layer. The band limit of each layer depends on the base band-limit, the transform lengths 1024(960) and 128(120) and the
sampling frequencies. The spectral band is extended more and more as the number of the enhancement layer is
increased. So, the new spectral components are added to each layer.

 Some help variables and arrays are needed to describe the bit-sliced decoding process of the side information and
spectral data in each BSAC fine grain layer. These help variables depend on sampling_frequency, layer, nch,
frame_length, top_layer, window_sequence and max_sfb and must be built up for each bsac_layer_element. The
pseudo code shown below describes

• how to determine slayer_size, the number of the sub-layers which the base layer is split into.

 slayer_size = 0

for (g = 0; g < num_window_groups; g++) {

if (window_sequence == EIGHT_SHORT_SEQUENCE) {

end_index[g] = (base_band+1) * 4 * window_group_length[g]

if (fs==44100 || fs==48000) {

if (end_index[g]%32>=16) end_index[g] = (int)(end_index[g]/32)*32 + 20

else if (end_index[g]%32 >= 4) end_index[g] = (int)(end_index[g]/32)*32 + 8

}

73

else if (fs==22050 || fs==24000 || fs==32000) end_index[g] = (int)(end_index[g]/16)*16

else if (fs==11025 || fs==12000 || fs==16000) end_index[g] = (int)(end_index[g]/32)*32

else end_index[g] = (int)(end_index[g]/64)*64

end_cband[g] = (end_index[g] + 31) / 32

}

else

end_cband[g] = (base_band+1)

slayer_size += end_cband[g];

}

• how to determine layer_group[], the group index of the spectral components to be added newly in the scalability layer

 layer = 0

 for (g = 0; g < num_window_groups; g++)

 for (w = 0; w < window_group_length[g]; w++)

 layer_group[layer++] = g;

 for (layer = slayer_size+8; layer < (top_layer+slayer_size); layer++)

 layer_group[layer] = layer_group[layer-8];

• how to determine layer_end_index[], the end offset of the spectral components to be added newly in each scalability
layer

• how to determine layer_end_cband[], the end coding band to be added newly in each scalability layer

• how to determine layer_start_index[], the start offset of the spectral components to be added newly in each scalability
layer

• how to determine layer_start_cband[], the start coding band to be added newly in each scalability layer

layer = 0

 for (g = 0; g < num_window_groups; g++) {

 for (cband = 0; cband < end_cband[g]; cband++) {

layer_start_cband[layer] = cband

end_cband[g] = layer_end_cband[layer] = cband+1

layer_start_index[layer] = cband * 32

end_index[g] = layer_end_index[layer++] = (cband+1) * 32

}

74

if (window_sequence == EIGHT_SHORT_SEQUENCE)

 last_index[g] = swb_offset_short_window[max_sfb] * window_group_length[g]

else

 last_index[g] = swb_offset_long_window[max_sfb]

 }

for (layer = slayer_size; layer < (top_layer+slayer_size); layer++) {

g = layer_group[layer]

layer_start_index[layer] = end_index[g]

if (fs==44100 || fs==48000) {

if (end_index[g]%32==0) end_index[g] += 8

else end_index[g] += 12

}

else if (fs==22050 || fs==24000 || fs==32000)

end_index[g] += 16

else if (fs==11025 || fs==12000 || fs==16000)

end_index[g] += 32

else

end_index[g] += 64

if (end_index[g] > last_index[g])

end_index[g] = last_index[g]

layer_end_index[layer] = end_index[g]

layer_start_cband[g] = end_cband[g]

end_cband[g] = layer_end_cband[layer] = (end_index[g] + 31) / 32

}

where, fs is the sampling frequency.

• how to determine layer_end_sfb[], the end scalefactor band to be added newly in each scalability layer

• how to determine layer_start_sfb[], the start scalefactor band to be added newly in each scalability layer

for (g = 0; g < num_window_groups; g++)

end_sfb[g] = 0

for (layer = 0; layer < (top_layer+slayer_size); layer++) {

75

g = layer_group[layer]

 layer_start_sfb[layer] = end_sfb[g]

layer_end_sfb[layer] = max_sfb;

for (sfb = 0; sfb < max_sfb; sfb++) {

if (layer_end_index[layer] <= swb_offset_short_window[sfb] * window_group_length[g]) {

layer_end_sfb[layer] = sfb + 1

break

}

}

 end_sfb[g] = layer_end_sfb[layer]

}

• how to determine available_len[i], the available maximum size of the bitstream of the i-th layer. If the arithmetic coding
was initialized at the beginning of the layer, 1 should subtracted from available_len[i] since the additional 1 bit is
required at the arithmetic coding termination. The maximum length of the 0th coding band side
information(max_cband0_si_len) is defined as 11.

for (layer=0; layer <(top_layer+slayer_size); layer++) {

layer_si_maxlen[layer] = 0

for (cband = layer_start_cband[layer]; cband < layer_end_cband[layer]; cband++)

for (ch=0; ch <nch; ch++) {

if (cband == 0)

layer_si_maxlen[layer] += max_cband0_si_len

else

layer_si_maxlen[layer] += max_cband_si_len[cband_si_type[ch]]

 }

 for (sfb = layer_start_sfb[layer]; sfb < layer_end_sfb[layer]; sfb++)

for (ch = 0; ch < nch; ch++)

layer_si_maxlen[layer] += max_sfb_si_len[ch] + 5

}

for (layer = slayer_size; layer <= (top_layer + slayer_size); layer++) {

layer_bitrate = nch * ((layer-slayer_size) * 1000 + 16000)

layer_bit_offset[layer] = layer_bitrate * BLOCK_SIZE_SAMPLES_IN_FRAME

76

 layer_bit_offset[layer] = (int)(layer_bit_offset[layer] / SAMPLING_FREQUENCY / 8) * 8

if (layer_bit_offset[layer] > frame_length*8)

layer_bit_offset[layer] = frame_length*8

}

 for (layer = (top_layer + slayer_size –1); layer >= slayer_size; layer--) {

bit_offset = layer_bit_offset[layer+1] – layer_si_maxlen[layer]

if (bit_offset < layer_bit_offset[layer])

layer_bit_offset[layer] = bit_offset

}

for (layer = slayer_size –1; slayer_size >= 0; slayer--)

layer_bit_offset[layer] = layer_bit_offset[layer+1] – layer_si_maxlen[layer]

overflow_size = (header_length + 7) * 8 – layer_bit_offset[0]

layer_bit_offset[0] = (header_length + 7) * 8;

if (overflow_size > 0) {

for (layer = (top_layer+slayer_size-1); layer >= slayer_size; layer--) {

layer_bit_size = layer_bit_offset[layer+1] – layer_bit_offset[layer]

layer_bit_size -= layer_si_maxlen[layer]

if (layer_bit_size >= overflow_size) {

layer_bit_size = overflow_size

overflow_size = 0

}

else

overflow_size = overflow_size – layer_bit_size

for (m=1; m<=layer; m++)

layer_bit_offset[m] += layer_bit_size

if (overflow_size<=0) break

}

}

else {

underflow_size = -overflow_size

for (m=1; m < slayer_size; m++) {

77

layer_bit_offset[m] = layer_bit_offset[m-1] + layer_si_maxlen[m-1]

layer_bit_offset[m] += underflow_size / slayer_size

if (layer <= (underflow_size%slayer_size)

layer_bit_offset[m] += 1

}

}

for (layer=0; layer <(top_layer+slayer_size); layer++)

available_len[layer] = layer_bit_offset[layer+1] – layer_bit_offset[layer]

 Some help variables and arrays are needed to describe the bit-sliced decoding process of the spectral values in each
BSAC fine grain layer. cur_snf[ch][g][i] is initialized as the MSB plane (MSBplane[ch][g][cband]) allocated to the coding
band cband, where we can get MSBplane[][] from cband_si[ch][g][cband] using Table 8.2.3. And, we start the decoding
of the bit-sliced data in each layer from the maximum significance, maxsnf.

 These help variables and arrays must be built up for each bsac_spectral_data(). The pseudo code shown below describes

• how to initialize cur_snf[][][], the current significance of the spectra to be added newly due to the spectral band
extension in each enhancement scalability layer.

/* set current snf */

g = layer_group[layer]

for(ch = 0; ch < nch; ch++) {

for (i=layer_start_index[layer]; i<layer_end_index[layer]; i++) {

cband = i/32;

cur_snf[ch][g][i] = MSBplane[ch][g][cband]

}

}

• how to determine maxsnf, the maximum significance of all vectors to be decoded.

maxsnf = 0;

for (g = start_g; g < end_g; g++)

for(ch = 0; ch < nch; ch++) {

for(i = start_index[g]; i< end_index[g]; i++)

if (maxsnf < cur_snf[ch][g][i]) maxsnf = cur_snf[ch][g][i]

}

• how to store cur_snf[][][] for the secondary coding (bsac_lower_spectra() and bsac_higher_spectra()) after the sliced
bits of the new spectra has been coded starting from the lowest layer to the top layer.

/* store current snf */

for (g = 0; g <no_window_groups; g++)

78

for(ch = 0; ch < nch; ch++) {

for (i=layer_start_index[layer]; i<layer_end_index[layer]; i++) {

unc_snf[ch][g][i] = cur_snf[ch][g][i]

}

}

8.2.3.2.6� Order of spectral coefficients in spectral_data

For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, window_group_length[0] = 1) the spectral data is in
ascending spectral order, as shown in the following :

sfb 2sfb 1sfb 0 . .. sfb (num_sfb-1)

Order of scalefactor bands for ONLY_LONG_SEQUENCE

spectral coefficients

For the EIGHT_SHORT_SEQUENCE window, each 4 spectral coefficients of blocks within each group are interleaved in
ascending spectral order and the interleaved spectral coefficients are interleaved in ascending group number, as shown in
the following :

where, WS is the start window index and WE is the end window index of group g

...

spectral coefficients of
group 0

...

spectral coefficients of group

spectral coefficients of
group 1 ... spectral coefficients of

group num_win_groups-1

spectral coefficients

Order of spectral data for EIGHT_SHORT_SEQUENCE

WS

0...3
 WE
0...3

WS
4...7

 WE
4...7

WS
80...83

 WE
80...83

8.2.3.2.7� Arithmetic Coding Procedure

Arithmetic Coding consists of the following 2 steps :
� Initialization which is performed prior to the coding of the first symbol
� Coding of the symbol themselves.

Registers, symbols and constants

Several registers, symbols and constants are defined to describe the arithmetic decoder.

• half[] : 32-bit fixed point array equal to ½

• range: 32-bit fixed point register. Contains the range of the interval.

79

• value: 32-bit fixed point register. Contains the value of the arithmetic code.

• est_cw_len: 16-bit fixed point register. Contains the estimated length of the arithmetic codeword to be decoded.

• p0: 16-bit fixed point register (Upper 6 MSBs are available, Other LSBs are 0). Probability of the ‘0’ symbol.

• p1: 16-bit fixed point register(Upper 6 MSBs are available, Other LSBs are 0). Probability of the ‘1’ symbol.

• cum_freq : 16-bit fixed point registers. Cummulative Probabilities of the symbols.

Initialization

The bitstreams of each segment are read in the buffer of each segment. And 32-bit zero is concatenated to the buffer of
each segment. If the segmented arithmetic coding is not, all the bitstreams of a frame is a segment and the zero stuffing is
used. See clause 8.2.4.5.3 for the detailed description of the segment.

The register value is set to 0, range to 1 and est_cw_len to 30. Using these initialized regiters, the 30 bits are read in
register value and registers are updated when the first symbol is decoded.

Decoding a symbol

Arithmetic decoding procedure varies on the symbol to be decode. If the symbol is the sliced bit of the spectral data, the
binary arithmetic decoding is used. Otherwise, the general arithmetic decoding is used.

When a symbol is binary arithmetic-decoded, the probability p0 of the ‘0’ symbol is provided according to the context
computed properly and using the probability table. p0 uses a 6-bit fixed-point number representation. Since the decoder is
binary, the probability of the ‘1’ symbol is defined to be 1 minus the probability of the ‘0’ symbol, i.e. p1 = 1-p0.

When a symbol is arithmetic-decoded, the cummulative probability values of multiple symbols are provided. The probability
values are regarded as the arithmetic model. The arithmetic model for decoding a symbol is given in the bitstream
elements. For example, arithmetic models of scalefactor and cband_si are given in the bitstream elements,
base_scf_model, enh_scf_model and cband_si_type. Each value of the arithmetic model uses a 14-bit fixed-point
representation.

Software

unsigned long half[16] =
{
 0x20000000, 0x10000000, 0x08000000, 0x04000000,
 0x02000000, 0x01000000, 0x00800000, 0x00400000,
 0x00200000, 0x00100000, 0x00080000, 0x00040000,
 0x00020000, 0x00010000, 0x00008000, 0x00004000
};

/* Initialize the Parameteres of the Arithmetic Decoder */
void initArDecode()
{

value = 0;
range = 1;
est_cw_len = 30;

}
/* GENEARL ARITHMETIC DECODE */
int decode_symbol (buf_idx, cum_freq, symbol)
int buf_idx; /* buffer index to save the arithmetic code word */
int cum_freq[]; /* Cumulative symbol freqencies */
int *symbol; /* Symbol decoded */
{

if (est_cw_len) {
range = (range<<est_cw_len);
value = (value<<est_cw_len) | readBits(buf_idx, est_cw_len); /* read bitstream from the buffer */

}

range >>= 14;
cum = value/range; /* Find cum freq */

80

/* Find symbol */
for (sym=0; cum_freq[sym]>cum; sym++);
*symbol = sym;

/* Narrow the code region to that allotted to this symbol. */
value -= (range * cum_freq[sym]);

if (sym > 0) {
range = range * (cum_freq[sym-1]-cum_freq[sym]);

}
else {

range = range * (16384-cum_freq[sym]);
}

for(est_cw_len=0; range<half[est_cw_len]; est_cw_len++)

return est_cw_len;
}

/* BINARY ARITHMETIC-DECODE THE NEXT SYMBOL. */
int decode_symbol2 (buf_idx, freq0, symbol)
int buf_idx; /* buffer index to save the arithmetic code word */
int p0; /* Normalized probability of symbol 0 */
int *symbol; /* Symbol decoded */
{

if (est_cw_len) {
range = (range<<est_cw_len);
value = (value<<est_cw_len) | readBits(buf_idx, est_cw_len); /* read bitstream from the buffer */

}

range >>= 14;

/* Find symbol */
if ((p0 * range) <= value) {

*symbol = 1;

/* Narrow the code region to that allotted to this symbol. */
value -= range * p0;
p1 = 16384 – p0;
range = range * p1;

}
else {

*symbol = 0;

/* Narrow the code region to that allotted to this symbol. */
range = range * p0;

}

for(est_cw_len=0; range<half[est_cw_len]; est_cw_len++);

return est_cw_len;
}

8.2.4� Tool Descriptions

BSAC stands for bit sliced arithmetic coding and is the name of a noiseless coder and bitstream formatter that provides a
fine grain scalability and error resilience in the MPEG-4 General Audio(GA) coder. The BSAC noiseless coding module is
an alternative to the AAC coding module, with all other modules of the AAC-based coder remaining unchanged. The
BSAC noiseless coding is used to make the bitstream scalable and error resilience and further reduce the redundancy of
the scalefactors and the quantized spectrum. The BSAC noiseless decoding process is split into 4 clauses. Clause 8.2.4.1

81

to 8.2.4.5 describe the detailed decoding process of the spectral data, the stereo or pns related data, the scalefactors and
the coding band side information.

8.2.4.1� Decoding of bit-sliced spectral data (bsac_spectral_data())

8.2.4.1.1� Description

BSAC uses the bit-slicing scheme of the quantized spectral coefficients in order to provide the fine grain scalability. And it
encode the bit-sliced data using binary arithmetic coding scheme in order to reduce the average bits transmitted while
suffering no loss of fidelity.

In BSAC scalable coding scheme, a quantized sequence is divided into coding bands, as shown in clause 8.2.3.2.5. And, a
quantized sequence is mapped into a bit-sliced sequence within a coding band. The noiseless coding of the sliced bits
relies on the probability table of the coding band, the significance and the other contexts.

The significance of the bit-sliced data is the position of the sliced bit to be coded.

The flags, sign_is_coded[] are updated with coding the vectors from MSB to LSB. They are initialized to 0. And they are
set to 1 when the sign of the quantized spectrum is coded.

The probability table for encoding the bit-sliced data within each coding band is included in the bistream element
cband_si_type and transmitted starting from the lowest coding band and progressing to the highest coding band allocated
to each layer. For the detailed description of the coding band side information cband_si_type, see clause 8.2.4.4. Table
8.2.3lists 23 probability tables which are used for encoding/decoding the bit-sliced data. The BSAC probability table
consists of several sub-tables. sub-tables are classified and chosen according to the significance and the coded upper bits
as shown Table 8.2.26 to Table 8.2.48. Every sliced bit is arithmetic encoded using the probability value chosen among
several possible sub-tables of BSAC probability table.

8.2.4.1.2� Definitions

Bit stream elements:

acod_sliced_bit[ch][g][i] Arithmetic codeword necessary for arithmetic decoding of the sliced bit. Using this
decoded bit, we can reconstuct each bit value of the quantized spectral value. The actually reconstructed
bit-value is depentent on the significance of the sliced bit.

acod_sign[ch][g][i] Arithmetic codeword from binary arithmetic coding sign_bit. The probability of the ‘0’ symbol is
defined to 0.5 which uses 8192 as a 16-bit fixed-point number. sign_bit indicates sign bit for non-zero
coefficient. A ‘1’ indicates a negative coefficient, a ‘0’ a positive one. When the bit value of the quantized
signal is assigned 1 for the first time, sign bit is arithmetic coded and sent.

Help elements:
layer scalability layer index

snf significance of vector to be decoded.

ch channel index

nch the number of channel

cur_snf [i] current significance of the i-th vector. cur_snf[] is initialized to Abit[cband]. See clause
8.2.3.2.5.

maxsnf maximum of current significance of the vectors to be decoded. See clause 8.2.3.2.5.

snf significance index

layer_data_available() function that returns ‘1’ as long as each layer’s bitstream is available, otherwise ‘0 ’. In other
words, it indicates whether the remaing bitstream of each layer is available or not.

82

layer_group[layer] indicates the group index of the spectral data to be added newly in the scalability layer. See
clause 8.2.3.2.5

layer_start_index[layer] indicates the index of the lowest spectral component to be added newly in the scalability
layer. See clause 8.2.3.2.5

layer_end_index[layer] indicates the index of the highest spectral component to be added newly in the scalability
layer. See clause 8.2.3.2.5

start_index[g] indicates the index of the lowest spectral component to be coded in the group g

end_index[g] indicates the index of the lowest spectral component to be coded in the group g

sliced_bit the decoded value of the sliced bits of the quantized spectrum.

sample[ch][g][i] quantized spectral coefficients reconstructed from the decoded bit-sliced data of spectral line i
in channel ch and group index g. See clause 8.2.3.2.2

sign_is_coded[ch][g][i] flag that indicates whether the sign of the ith quantized spectrum is already coded (1) or not
(0) in channel ch and group index g.

sign_bit[ch][g][i] sign bit for non-zero coefficient. A ‘1’ indicates a negative coefficient, a ‘0’ a positive one.
When the bit value of the quantized signal is assigned 1 for the first time, sign bit is arithmetic
coded and sent.

8.2.4.1.3� Decoding process

In BSAC encoder, the absolute values of quantized spectral coefficients is mapped into a bit-sliced sequence. These
slicded bits are the symbols of the arithmetic coding. Every siliced bits are binary arithmetic coded from the lowest-
frequency coefficient to the highest-frequency coefficient of the scalability layer, starting the Most Significant Bit(MSB)
plane and progressing to the Least Significant Bit(LSB) plane. The arithmetic coding of the sign bits associated with non-
zero coefficient follows that of the sliced bit when the bit-slice of the spectral coefficient is 1 for the first time.

For the case of multiple windows per block, the concatenated and possibly grouped and interleaved set of spectral
coefficients is treated as a single set of coefficients that progress from low to high as described in clause 8.2.3.2.6. This set
of spectral coefficients may need to be de-interleaved after they are decoded. The spectral information for all scalefactor
bands equal to or greater than max_sfb is set to zero.

After all MSB data are encoded from the lowest frequency line to the highest, the same encoding process is repeated until
LSB data is encoded or the layer data is not available.

The length of the available bitstream (available_len[]) is initialized at the beginning of each layer as described in clause
8.2.3.2.5. The estimated length of the codeword (est_cw_len) to be decoded is calculated from the arithmetic decoding
process as described in clause 8.2.3.2.7. After the arithmetic decoding of a symbol, the length of the available bitstream
should be updated by subtracting the estimated codeword length from it. We can detect whether the remaing bitstream of
each layer is available or not by checking the available_len.

The bit-sliced data is decoded with the probability which is selected among values listed in Table 8.2.26 to Table 8.2.48.

The probability value should be defined in order to arithmetic-code the symbols (the sliced bits). Binary probability table is
made up of probability values (p0) of the symbol ‘0’. First of all, probability table is selected using cband_si as shown in
Table 8.2.1 Next, the sub-table is selected in the probability table according to the context such as the current significance
of the spectral coefficient and the higher bit-slices that have been decoded. All the vector of the higher bit-slices,
higher_bit_vector are initialized to 0 before the coding of the bit-sliced data is started,. Whenever the bit-slice is coded, the
vector, higher_bit_vector is updated as follows :

higher_bit_vector[ch][g][i] = (higher_bit_vector[ch][g][i]<<1) + decoded_bitslice

And, the probability (p0) is selected among the several values in the sub-table. In order to select one of the several
probability values in the sub-table, the index of the probability should be decided. If the higher bit-slice vector is non-zero,

83

the index of the probability (p0) is (hgiher_bit_vector[ch][g][i] - 1). Otherwise, it relies upon the sliced bits of successive
non-overlapping 4 spectral data as shown in Table 8.2.4.

However if the available codeword size is smaller than 14, there is a constraints on the selected probability value as
follows :

if (available_len <14) {

if (p0 < min_p0[available_len])

p0 = min_p0[available_len]

else if (p0 > max_p0[available_len])

p0 = max_p0[available_len]

}

The minimum probability min_p0[] and the maximum probability max_p0[] is listed in Table 8.2.5 and Table 8.2.6.

Detailed arithmetic decoding procedure is described in this clause 8.2.3.2.7.

There are 23 probability tables which can be used for encoding/decoding the bit-sliced data. 23 probability table are
provided to cover the different statistics of the bit-slices. In order to transmit the probability table used in encoding
process, the probability table is included in the syntax element, cband_si. After cband_si is decoded, the probaiblity table
is mapped from cband_si using Table 8.2.3 and the decoding of the bit-sliced data shall be started.

The current significance of the spectral coefficient represents the bit-plane of the bit-slice to be decoded. Table 8.2.3
shows the MSB plane of the decoded sample according to cband_si. Current significance, cur_snf[] of all spectral
coefficient within a coding band are initialized to the MSB plane. For the detailed initialization process, see clause 8.2.3.2.5

The arithmetic decoding of the sign bit associated with non-zero coefficient follows the arithmetic decoding of the sliced bit
when the bit-value of the quantized spectral coefficient is 1 for the first time, with a 1 indicating a negative coefficient and a
0 indicating a positive one. The flag, sign_is_coded[] represents whether the sign bit of the quantized spectrum has been
decoded or not. Before the decoding of the bit-sliced data is started, all the sign_is_coded flags are set to 0. The flag,
sign_is_coded is set to 1 after the sign bit is decoded. The decoding process of the sign bit can be summarized as follows :

i =the spectral line index

if(sample[ch][g][i] && !sign_is_coded[ch][g][i]) {

arithmetic decoding of the sign bit

 sign_is_coded[ch][g][i] = 1

}

Decoded symbol need to be reconstructed to the sample. For the detailed reconstruction of the blt-sliced data, see
Reconstruction of the decoded sample from bit-sliced data part in clause 8.2.3.2.2.

8.2.4.2� Decoding of stereo_info, ms_used or noise_flag

8.2.4.2.1� Descriptions

The BSAC scalable coding scheme includes the noiseless coding which is different from MPEG-4 AAC coding and further
reduce the redundancy of the stereo-related data.

84

Decoding of the stereo-related data and Perceptual Noise Substitution(pns) data is depended on pns_data_present and
stereo_info which indicates the stereo mask. Since the decoded data is the same value with MPEG-4 AAC, the MPEG-4
AAC stereo-related and pns processing follows the decoding of the stereo-related data and pns data.

8.2.4.2.2� Definitions

Bit stream elements:

acode_ms_used[g][sfb] arithmetic codeword from the arithmetic coding of ms_used which is one-bit flag per
scalefactor band indicating that M/S coding is being used in window group g and
scalefactor band sfb, as follows:

 0 Independent

1 ms_used

acode_stereo_info[g][sfb] arithmetic codeword from the arithmetic coding of stereo_info which is two-bit flag per
scalefactor band indicating that M/S coding or Intensity coding is being used in window
group g and scalefactor band sfb, as follows :

00 Independent

01 ms_used

10 Intensity_in_phase

11 Intensity_out_of_phase or noise_flag_is_used

Note : If ms_mask_present is 3, noise_flag_l and noise_flag_r are 0 value, then
stereo_info is interpreted as out-of-phase intensity stereo regardless the value of
pns_data_present.

acode_noise_flag[g][sfb] arithmetic codeword from the arithmetic coding of noise_flag which is 1-bit flag per
scalefactor band indicating whether the perceptual noise substitution is used(1) or not(0)
in window group g and scalefactor band sfb.

acode_noise_flag_l[g][sfb] arithmetic codeword from the arithmetic coding of noise_flag_l which is 1-bit flag per
scalefactor band indicating whether the perceptual noise substitution is used(1) or not(0)
in the left channel, window group g and scalefactor band sfb .

acode_noise_flag_r[g][sfb] arithmetic codeword from the arithmetic coding of noise_flag which is 1-bit flag per
scalefactor band indicating whether the perceptual noise substitution is used(1) or not(0)
in the right channel, window group g and scalefactor band sfb.

acode_noise_mode[g][sfb] arithmetic codeword from the arithmetic coding of noise_mode which is two-bit flag per
scalefactor band indicating that which noise substitution is being used in window group g
and scalefactor band sfb, as follows :

 00 Noise Subst L+R (independent)

 01 Noise Subst L+R (correlated)

 10 Noise Subst L+R (correlated, out-of-phase)

 11 reserved

85

Help elements:
ch channel index

g group index

sfb scalefacotor band index within group

layer scalability layer index

nch the number of channel

ms_mask_present this two bit field indeicates that the stereo mask is

00 Independent

01 1 bit mask of ms_used is located in the layer sfb side information part.

10� All ms_used are ones

11� 2 bit mask of stereo_info is located in the layer sfb side information part.

layer_group[layer] indicates the group index of the spectral data to be added newly in the scalability layer. See
clause 8.2.3.2.5

layer_start_sfb[layer] indicates the index of the lowest scalefactor band index to be added newly in the scalability
layer. See clause 8.2.3.2.5

layer_end_sfb[layer] indicates the highest scalefactor band index to be added newly in the scalability layer. See
clause 8.2.3.2.5

8.2.4.2.3� Decoding process

Decoding process of ms_mask_present, noise_flag or ms_used is depended on pns_data_present, number of channel
and ms_mask_present. pns_data_present flag is conveyed as a element in syntax of general_header(). pns_data_present
indicates whether pns tool is used or not at each frame. stereo_info indeicates the stereo mask as follows :

 00 Independent

 01 1 bit mask of ms_used is located in the layer sfb side information part.

 10 All ms_used are ones

 11 2 bit mask of stereo_info is located in the layer sfb side information part.

Detailed arithmetic decoding procedure is described in this clause 8.2.3.2.7.

Decoding process is classified as follows :

• 1 channel, no pns data

If the number of channel is 1 and pns data is not present, there is no bit-stream elements related to stereo or pns.

• 1 channel, pns data

If the number of channel is 1 and pns data is present, noise flag of the scalefactor bands between pns_start_sfb to
max_sfb is arithmetic decoded using model shown in Table 8.2.24. Perceptual noise substitution is done according to
the decoded noise flag.

• 2 channel, ms_mask_present=0 (Independent), No pns data

86

If ms_mask_present is 0 and pns data is not present, arithmetic decoding of stereo_info or ms_used is not needed.

• 2 channel, ms_mask_present=0 (Independent), pns data

If ms_mask_present is 0 and pns data is present, noise flag for pns is arithmetic decoded using model shown in Table
8.2.24. Perceptual noise substitution of independent mode is done according to the decoded noise flag.

• 2 channel, ms_mask_present=2 (all ms_used), pns data or no pns data

All ms_used values are ones in this case. So, M/S stereo processing of AAC is done at all scalefactor band. And
naturally there can be no pns processing regardless of pns_data_present flag.

• 2 channel, ms_mask_present=1 (optional ms_used), pns data or no pns data

1 bit mask of max_sfb bands of ms_used is conveyed in this case. So, ms_used is arithmetic decoded using the
ms_used model given in Table 8.2.22. M/S stereo processing of AAC is done or not according to the decoded ms_used.
And there is no pns processing regardless of pns_data_present flag

• 2 channel, ms_mask_present=3 (optional ms_used/intensity/pns), no pns data

At first, stereo_info is arithmetic decoded using the stereo_info model given in Table 8.2.23.

stereo_info is is two-bit flag per scalefactor band indicating that M/S coding or Intensity coding is being used in window
group g and scalefactor band sfb as follows :
 00 Independent
 01 ms_used
 10 Intensity_in_phase
 11 Intensity_out_of_phase
If stereo_info is not 0, M/S stereo or intensity stereo of AAC is done with these decoded data. Since pns data is not
present, we don_t have to process pns.

• 2 channel, ms_mask_present=3 (optional ms_used/intensity/pns), pns data

stereo_info is arithmetic decoded using the stereo_info model given in Table 8.2.23.

If stereo_info is 1 or 2, M/S stereo or intensity stereo processing of AAC is done with these decoded data and there is no
pns processing.

If stereo_info is 3 and scalefactor band is larger than or equal to pns_start_sfb, noise flag for pns is arithmetic decoded
using model given in Table 8.2.24. And then if the both noise flags of two channel are 1, noise substitution mode is
arithmetic decoded using model given in Table 8.2.25. The perceptual noise is substituted or out_of_phase intensity
stereo processing is done according to the substitution mode. Otherwise, the perceptual noise is substituted only if noise
flag is 1.

If stereo_info is 3 and scalefactor band is smaller than pns_start_sfb, out_of_phase intensity stereo processing is done.

8.2.4.3� Decoding of scalefactors

8.2.4.3.1� Description

The BSAC scalable coding scheme includes the noiseless coding which is different from AAC and further reduce the
redundancy of the scalefactors.

The max_scalefactor is coded as an 8 bit unsigned integer. The scalefactors are differentially coded relative to the
max_scalefactor value and then Arithmetic coded using the differential scalefactor model.

8.2.4.3.2� Definitions

Bit stream element:

87

acode_scf[ch][g][sfb] Arithmetic codeword from the coding of the differential scalefactors.

Help elements:
ch channel index

g group index

sfb scalefacotor band index within group

layer scalability layer index

nch the number of channel

layer_group[layer] indicates the group index of the spectral data to be added newly in the scalability layer. See
clause 8.2.3.2.5

layer_start_sfb[layer] indicates the index of the lowest scalefactor band index to be added newly in the scalability
layer. See clause 8.2.3.2.5

layer_end_sfb[layer] indicates the highest scalefactor band index to be added newly in the scalability layer. See
clause 8.2.3.2.5

8.2.4.3.3� Decoding process

The spectral coefficients are divided into scalefactor bands that contain a multiple of 4 quantized spectral coefficients.
Each scalefactor band has a scalefactor.

The differential scalefactor index is arithmetic-decoded using the arithmetic model given in Table 8.2.2. The arithmetic
model of the scalefactor for the base layer is given as a 3 bit unsigned integer bitstream element, base_scf_model. The
arithmetic model of the scalefactor for the enhancement layers is given as a 3 bit unsigned integer bitstream element,
enh_scf_model.

For all scalefactors the difference to the offset value is arithmetic-decoded. All scalefactors are calculated from the
difference and the offset value(64). The offset value is given explicitly as a 8 bit PCM in the bitstream element
max_scalefactor. Detailed arithmetic decoding procedure is described in this clause 8.2.3.2.7.

 The following pseudo code describes how to decode the scalefactors sf[ch][g][sfb] in base layer and each enhancement
layer:

g = layer_group[ch][g][sfb]

for (ch =0; ch<nch; ch++) {

for (sfb = layer_start_sfb[layer]; sfb < layer_end_sfb[layer]; sfb++) {

 diff_scf = arithmetic_decoding()

 scf[ch][g][sfb] = max_scalefactor – diff_scf

}

}

88

8.2.4.4� Decoding of coding band side information

8.2.4.4.1� Descriptions

In BSAC scalable coding scheme, the spectral coefficients are divided into coding bands which contain 32 quantized
spectral coefficients for the noiseless coding. Coding bands are the basic units used for the noiseless coding. The set of
bit-sliced sequence is divided into coding bands. The MSB plane and the probability table of each coding band are
included in this layer coding band side information, cband_si as shown in Table 8.2.3. The coding band side informations
of each layer are transmitted starting from the lowest coding band (layer_start_cband[layer]) and progressing to the
highest coding band (layer_end_cband[layer]). For all cband_si, it is arithmetic-coded using the arithmetic model as given
in Table 8.2.1

8.2.4.4.2� Definitions

Bit stream element:
acode_cband_si[ch][g][cband] Arithmetic codeword from the arithmetic coding of cband_si for each coding-band.

Help elements:
g group index

cband coding band index within group

ch channel index

nch the number of channel

layer_group[layer] indicates the group index of the spectral data to be added newly in the scalability layer. See
clause 8.2.3.2.5

layer_start_cband[layer] indicates the lowest coding band index to be added newly in the scalability layer. See clause
8.2.3.2.5

layer_end_cband[layer] indicates the highest coding band index to be added newly in the scalability layer. See clause
8.2.3.2.5

8.2.4.4.3� Decoding process

cband_si is arithmetic-coded using the arithmetic model as given in Table 8.2.1. The arithmetic model used for coding
cband_si is dependant on a 5-bit unsigned integer in the bitstream element, cband_si_type as shown in Table 8.2.1. And,
the largest value of the decodable cband_si is given in Table 8.2.1. If the decoded cband_si larger than this value, it can
be considered that there was a bit-error in the bitream.Detailed arithmetic decoding procedure is described in this clause
8.2.3.2.7.

The following pseudo code describes how to decode the cband_si cband_si[ch][g][cband] in base layer and each
enhancement layer:

g = layer_group[layer]

for (ch=0; ch<nch; ch++) {

num_window_groups for(cband=layer_start_cband[g][layer]; cband<layer_cband[g][layer+1]; cband++) {

cband_si[ch][g][cband] = arithmetic_decoding();

if (cband_si[ch][g][cband] > largest_cband_si)

bit_error_is_generated

89

 }

 }

}

 where, layer_cband[g][layer] is the start coding band and layer_cband[g][layer+1] is the end coding band for decoding
the arithmetic model index in each layer.

8.2.4.5� Segmented Binary Arithmetic Coding (SBA)

8.2.4.5.1� Tool Description

Segmented Binary Arithmetic Coding (SBA) is based on the fact that the arithmetic codewords can be partitioned at known
positions so that these codewords can be decoded independent of any error within other sections. Therefore, this tool
avoids error propagation to those sections. The arithmetic coding should initialized at the beginning of these segments and
terminated at the end of these segments in order to localize the arithmetic codewords. This tool is activated if the syntax
element, sba_mode is 1. And this flag should be set to 1 if the BSAC is used in the error-prone environment.

8.2.4.5.2� Definitions

There is no definition because only the initialization and termination process are added at the beginning and the end of the
segments in order to localize the arithmetic codewords.

8.2.4.5.3� Decoding Process

The arithmetic coding is terminated at the end of the segments, and re-initialized at the beginning of the next segment. The
segment is made up of the scalability layers. terminal_layer[layer] indicates whether each layer is the last layer of the
segment, which is set as follows :

for (layer = 0; layer < (top_layer+slayer_size-1); layer++) {

if (layer_start_cband[layer] != layer_start_cband[layer+1])

terminal_layer[layer] = 1;

else

terminal_layer[layer] = 0;

}

}

where, toplayer is the top layer to be encoded,

 layer_max_cband[] are the maximum coding band limit to be encoded

 and slayer_size is the sub-layer size of the base layer.

The following figure shows an example of the segmented bistream to be made in the encoder.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 … Layer N

Segment 0 Segment 1 Segment 2 Segment n

Initialization Termination

90

In the decoder, the bitstream of each layer is split from the total bitstream. If the previous layer is the last of the segment,
the split bitstream is stored in the independent buffer and arithmetic decoding process is re-initialized. Otherwise, the split
bitstream is concatenated to that of the previous layer and used for arithmetic decoding sequentially.
In order to do the arithmetic decoding perfectly, 32-bit zero value should be concatenated to the split bitstream if the layer
is the last of the segment. The following figure shows an example of the bitstream spliting and zero stuffing in decoder
part.

8.2.4.6� Tables

Table 8.2.1 cband_si_type Parameters

Largest cband_si Model listed incband_si_ty
pe

max_cband_
si_len 0th cband Other cband 0th cband Other cband

0 6 6 4 Table 8.2.21 Table 8.2.14
1 5 6 6 Table 8.2.21 Table 8.2.15
2 6 8 4 Table 8.2.21 Table 8.2.14
3 5 8 6 Table 8.2.21 Table 8.2.15
4 6 8 8 Table 8.2.21 Table 8.2.16
5 6 10 4 Table 8.2.21 Table 8.2.14
6 5 10 6 Table 8.2.21 Table 8.2.15
7 6 10 8 Table 8.2.21 Table 8.2.16
8 5 10 10 Table 8.2.21 Table 8.2.17
9 6 12 4 Table 8.2.21 Table 8.2.14
10 5 12 6 Table 8.2.21 Table 8.2.15
11 6 12 8 Table 8.2.21 Table 8.2.16
12 8 12 12 Table 8.2.21 Table 8.2.18
13 6 14 4 Table 8.2.21 Table 8.2.14
14 5 14 6 Table 8.2.21 Table 8.2.15
15 6 14 8 Table 8.2.21 Table 8.2.16
16 8 14 12 Table 8.2.21 Table 8.2.18
17 9 14 14 Table 8.2.21 Table 8.2.19
18 6 15 4 Table 8.2.21 Table 8.2.14
19 5 15 6 Table 8.2.21 Table 8.2.15
20 6 15 8 Table 8.2.21 Table 8.2.16
21 8 15 12 Table 8.2.21 Table 8.2.18
22 10 15 15 Table 8.2.21 Table 8.2.20
23 8 16 12 Table 8.2.21 Table 8.2.18

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 … Layer N

Segment 0 Segment 1 Segment 2 Segment n

Layer 0 0 stuffing

Layer 1 Layer 2 Layer3 0 stuffing

Layer 4 Layer 5 ...… 0 stuffing

Layer N...… 0 stuffing

91

24 10 16 16 Table 8.2.21 Table 8.2.20
25 9 17 14 Table 8.2.21 Table 8.2.19
26 10 17 17 Table 8.2.21 Table 8.2.20
27 10 18 18 Table 8.2.21 Table 8.2.20
28 12 19 19 Table 8.2.21 Table 8.2.20
29 12 20 20 Table 8.2.21 Table 8.2.20
30 12 21 21 Table 8.2.21 Table 8.2.20
31 12 22 22 Table 8.2.21 Table 8.2.20

Table 8.2.2 Scalefactor Model Parameters

scf_model Largest Differential ArModel Model listed in
0 0 not used
1 3 Table 8.2.7
2 7 Table 8.2.8
3 15 Table 8.2.9
4 15 Table 8.2.10
5 31 Table 8.2.11
6 31 Table 8.2.12
7 63 Table 8.2.13

Table 8.2.3 BSAC cband_si Parameters

cband_si MSB plane Table listed in cband_si MSB plane Table listed in
0 0 Table 8.2.26 12 6 Table 8.2.38
1 1 Table 8.2.27 13 7 Table 8.2.39
2 1 Table 8.2.28 14 7 Table 8.2.40
3 2 Table 8.2.29 15 8 Table 8.2.41
4 2 Table 8.2.30 16 9 Table 8.2.42
5 3 Table 8.2.31 17 10 Table 8.2.43
6 3 Table 8.2.32 18 11 Table 8.2.44
7 4 Table 8.2.33 19 12 Table 8.2.45
8 4 Table 8.2.34 20 13 Table 8.2.46
9 5 Table 8.2.35 21 14 Table 8.2.47
10 5 Table 8.2.36 22 15 Table 8.2.48
11 6

Table 8.2.37

Table 8.2.4 Position of Probability Value in Probability Table

h 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

g 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

f 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

e 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a b c d

0 x x x 0 15 22 29 32 39 42 45

x x 0 1 16 23 30 46 53 56 591
x x 1 2 17 24 31 46 53 56 59

x 0 0 3 18 33 40 47 54 60 63
x 0 1 4 19 33 40 48 55 60 632
x 1 0 5 20 34 41 47 54 60 63

92

x 1 1 6 21 34 41 48 55 60 63

0 0 0 7 25 35 43 49 57 61 64
0 0 1 8 25 36 43 50 57 62 64

0 1 0 9 26 35 43 51 58 61 64

0 1 1 10 26 36 43 52 58 62 64

1 0 0 11 27 37 44 49 57 61 64

1 0 1 12 27 38 44 50 57 62 64

1 1 0 13 28 37 44 51 58 61 64

3

1 1 1 14 28 38 44 52 58 62 64

where, i = spectral index
a = i % 4
b = the sliced bit of (i-3)th spectral data whose significance is same with that of ith spectral data
c = the sliced bit of (i-2)th spectral data whose significance is same with that of ith spectral data
d = the sliced bit of (i-1)th spectral data whose significance is same with that of ith spectral data
e = whether the higher bits of the (i-a+3)th spectral data whose sigificance is larger than that of i-th spectral data is
nonzero (1) or zero(0)
f = whether the higher bits of the (i-a+2)th spectral data whose sigificance is larger than that of i-th spectral data is
nonzero (1) or zero(0)
g = whether the higher bits of the (i-a+1)th spectral data whose sigificance is larger than that of i-th spectral data is
nonzero (1) or zero(0)
h = whether the higher bits of the (i-a)th spectral data whose sigificance is larger than that of i-th spectral data is
nonzero (1) or zero(0)

Table 8.2.5 The minimum probability(min_p0) in proportion to the available length of the layer

Available
length

1 2 3 4 5 6 7 8 9 10 11 12 13

min_p0

(hexadecimal)
2000 1000 800 400 200 100 80 40 20 10 8 4 2

Table 8.2.6 The maximum probability(max_p0) in proportion to the available length of the layer

Available
length

1 2 3 4 5 6 7 8 9 10 11 12 13

max_p0

(hexadecimal)
2 4 8 10 20 40 80 100 200 400 800 1000 2000

Table 8.2.7 scalefactor arithmetic model 1

size cumulative frequencies (hexadecimal)
4 752, 3cd, 14d, 0,

Table 8.2.8 scalefactor arithmetic model 2

size cumulative frequencies (hexadecimal)
8 112f, de7, a8b, 7c1, 47a, 23a, d4, 0,

93

Table 8.2.9 scalefactor arithmetic model 3

size cumulative frequencies (hexadecimal)
1f67, 1c5f, 18d8, 1555, 1215, eb4, adc, 742,

16
408, 1e6, df, 52, 32, 23, c, 0,

Table 8.2.10 scalefactor arithmetic model 4

size cumulative frequencies (hexadecimal)
250f, 22b8, 2053, 1deb, 1b05, 186d, 15df, 12d9,

16
f77, c01, 833, 50d, 245, 8c, 33, 0,

Table 8.2.11 scalefactor arithmetic model 5

size cumulative frequencies (hexadecimal)
8a8, 74e, 639, 588, 48c, 3cf, 32e, 272,
1bc, 13e, e4, 97, 69, 43, 2f, 29,
20, 1b, 18, 15, 12, f, d, c,

32

a, 9, 7, 6, 4, 3, 1, 0,

Table 8.2.12 scalefactor arithmetic model 6

size cumulative frequencies (hexadecimal)
c2a, 99f, 809, 6ec, 603, 53d, 491, 40e,
394, 30a, 2a5, 259, 202, 1bc, 170, 133,
102, c9, 97, 73, 4f, 37, 22, 16,

32

f, b, 9, 7, 5, 3, 1, 0,

Table 8.2.13 scalefactor arithmetic model 7

size cumulative frequencies (hexadecimal)
3b5e, 3a90, 39d3, 387c, 3702, 3566, 33a7, 321c,
2f90, 2cf2, 29fe, 26fa, 23e4, 20df, 1e0d, 1ac4,
1804, 159a, 131e, 10e7, e5b, c9c, b78, a21,

8fd, 7b7, 6b5, 62c, 55d, 4f6, 4d4, 44b,
38e, 2e2, 29d, 236, 225, 1f2, 1cf, 1ad,
19c, 179, 168, 157, 146, 135, 123, 112,
101, f0, df, ce, bc, ab, 9a, 89,

64

78, 67, 55, 44, 33, 22, 11, 0,

Table 8.2.14 cband_si arithmetic model 0

size cumulative frequencies (hexadecimal)
5 3ef6, 3b59, 1b12, 12a3, 0,

Table 8.2.15 cband_si arithmetic model 1

size cumulative frequencies (hexadecimal)
7 3d51, 33ae, 1cff, fb7, 7e4, 22b, 0,

Table 8.2.16 cband_si arithmetic model 2

size cumulative frequencies (hexadecimal)
3a47, 2aec, 1e05, 1336, e7d, 860, 5e0, 44a,

9
0,

94

Table 8.2.17 cband_si arithmetic model 3

size cumulative frequencies (hexadecimal)
36be, 27ae, 20f4, 1749, 14d5, d46, ad3, 888,

11
519, 20b, 0,

Table 8.2.18 cband_si arithmetic model 4

size cumulative frequencies (hexadecimal)
3983, 2e77, 2b03, 1ee8, 1df9, 1307, 11e4, b4d,

13
94c, 497, 445, 40, 0,

Table 8.2.19 cband_si arithmetic model 5

size cumulative frequencies (hexadecimal)
306f, 249e, 1f56, 1843, 161a, 102d, f6c, c81,

15
af2, 7a8, 71a, 454, 413, 16, 0,

Table 8.2.20 cband_si arithmetic model 6

size cumulative frequencies (hexadecimal)
31af, 2001, 162d, 127e, f05, c34, b8f, a61,
955, 825, 7dd, 6a9, 688, 55b, 54b, 2f7,23
198, 77, 10, c, 8, 4, 0,

Table 8.2.21 cband_si arithmetic model for 0th coding band

size cumulative frequencies (hexadecimal)
3ff8, 3ff0, 3fe8, 3fe0, 3fd7, 3f31, 3cd7, 3bc9,

3074, 2bcf, 231b, 13db, d51, 603, 44c, 80,23
30, 28, 20, 18, 10, 8, 0,

Table 8.2.22 MS_used model

size cumulative frequencies (hexadecimal)
2 2000, 0,

Table 8.2.23 stereo_info model

size cumulative frequencies(hexadecimal)
4 3666, 1000, 666, 0,

Table 8.2.24 noise_flag arithmetic model

size cumulative frequencies(hexadecimal)
2 2000, 0,

Table 8.2.25 noise_mode arithmetic model

size cumulative frequencies(hexadecimal)
4 3000, 2000, 1000, 0,

Table 8.2.26 BSAC probability table 0

95

MSB plane = 0

Table 8.2.27 BSAC probability table 1

MSB plane = 1
Significance Probability Value of symbol ‚‘0‘ (Hexadecimal)

3900, 3a00, 2f00, 3b00, 2f00, 3700, 2c00, 3b00,
1

3000, 3600, 2d00, 3900, 2f00, 3700, 2c00,

Table 8.2.28 BSAC probability table 2

MSB plane = 1
Significance Probability Value of symbol ‚‘0‘ (Hexadecimal)

2800, 2800, 2500, 2900, 2600, 2700, 2300, 2a00,
1

2700, 2800, 2400, 2800, 2500, 2600, 2200,

Table 8.2.29 BSAC probability table 3

MSB plane = 2

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3d00, 3d00, 3300, 3d00, 3300, 3b00, 3300, 3d00,
2 zero

3200, 3b00, 3100, 3e00, 3700, 3c00, 3300,
3700, 3a00, 2800, 3b00, 2600, 2c00, 2400, 3a00,
2500, 2b00, 2400, 3100, 2300, 2900, 2300, 3000,
2c00, 1d00, 2200, 1a00, 1c00, 1600, 2700, 2200,
1a00, 1d00, 1900, 1c00, 1e00, 2c00, 2400, 1900,
1e00, 1f00, 1c00, 2b00, 2400, 2900, 2700, 2400,
1300, 1a00, 2000, 1800, 2300, 2500, 1f00, 2c00,
2300, 3600, 2800, 3100, 2500, 1400, 1200, 1800,
1400, 2100, 2200, 1000, 1e00, 3000, 2600, 1200,

zero

2200,

1

non-zero 3100,

Table 8.2.30 BSAC probability table 4

MSB plane = 2

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3900, 3a00, 2e00, 3a00, 2f00, 3400, 2a00, 3a00,
2 zero

3000, 3500, 2c00, 3600, 2b00, 3100, 2500,
1e00, 1d00, 1c00, 1d00, 1c00, 1d00, 1b00, 1d00,
1e00, 1e00, 1a00, 1e00, 1c00, 1d00, 1b00, 1a00,
1a00, 1800, 1800, 1800, 1700, 1700, 1800, 1a00,
1700, 1700, 1900, 1800, 1600, 1700, 1600, 1500,
1700, 1800, 1600, 1c00, 1700, 1900, 1700, 1500,
1c00, 1500, 1600, f00, 1800, 1400, 1700, 1a00,
1a00, 1e00, 1800, 1c00, 1b00, 1500, 1300, 1500,
1400, 1600, 1500, 1700, 1600, 1b00, 1800, 1400,

zero

1400,

1

non-zero 3600,

Table 8.2.31 BSAC probability table 5

MSB plane = 3

96

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3d00, 3d00, 3200, 3d00, 3300, 3d00, 3600, 3d00,
3 zero

3500, 3c00, 3500, 3f00, 3b00, 3f00, 3d00,
3c00, 3d00, 2b00, 3d00, 2900, 3500, 2c00, 3d00,
2b00, 3400, 2b00, 3800, 2b00, 3700, 2a00, 3900,
3400, 2400, 2a00, 1c00, 1f00, 1600, 3500, 2500,
1a00, 2a00, 2200, 2b00, 2a00, 3500, 2600, 1a00,
2600, 2500, 2700, 3500, 2d00, 3800, 3200, 2e00,
1800, 1600, 2900, 2500, 3100, 2c00, 2300, 3600,
3000, 3c00, 3300, 3b00, 3400, 1700, 1a00, 1c00,
1900, 2900, 2a00, 2400, 2700, 3c00, 3600, 1d00,

zero

3100,

2

non-zero 3100,
3400, 3800, 2700, 3900, 2700, 2f00, 2200, 3800,
2500, 2d00, 2000, 3300, 2000, 2900, 1e00, 2b00,
2300, 1a00, 1a00, 1b00, 1800, 1700, 1e00, 1c00,
1b00, 1c00, 1b00, 1a00, 1800, 1d00, 1b00, 1800,
1900, 1b00, 1a00, 1d00, 1e00, 1f00, 1b00, 1e00,
1200, 1400, 1a00, 1300, 1c00, 1b00, 1900, 2000,
1e00, 3000, 2900, 2d00, 2500, 1300, 1700, 1400,
1300, 1e00, 1f00, 1100, 1900, 2100, 1e00, 1500,

zero

1a00,

1

non-zero 2a00, 2b00, 2800,

Table 8.2.32 BSAC probability table 6

MSB plane = 3

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3800, 3a00, 2d00, 3a00, 2d00, 3600, 2d00, 3a00,
3 zero

2d00, 3600, 2b00, 3a00, 2800, 3600, 2700,
2b00, 3000, 2500, 2f00, 2600, 2d00, 2400, 3000,
2500, 2b00, 2400, 2d00, 2500, 2800, 2500, 2a00,
2900, 2300, 2200, 1e00, 1b00, 1900, 2600, 2300,
1f00, 1d00, 2200, 1b00, 1800, 2100, 2100, 1d00,
1d00, 1f00, 1f00, 2900, 2600, 2a00, 2100, 2300,
1800, 1a00, 1d00, 2000, 1c00, 1a00, 1e00, 2900,
2800, 2f00, 2300, 2f00, 2600, 1d00, 1700, 1d00,
1c00, 1e00, 2100, 1700, 2200, 2300, 2300, 1400,

zero

1a00,

2

non-zero 3000,
1900, 1900, 1900, 1b00, 1700, 1b00, 1a00, 1000,
1900, 1600, 1800, 1e00, 1900, 1a00, 1700, 1b00,
1700, 1500, 1500, 1500, 1700, 1400, 1900, 1700,
1600, 1600, 1200, 1300, 1200, 1600, 1500, 1500,
1300, 1600, 1600, 1c00, 1400, 1700, 1600, 1400,
1400, 1400, 1500, 1400, 1300, 1300, 1500, 1800,
1600, 1f00, 1a00, 1e00, 1800, 1700, 1600, 1600,
1300, 1400, 1300, 1100, 1500, 1600, 1500, 1200,

zero

1300,

1

non-zero 2b00, 2800, 2700,

97

Table 8.2.33 BSAC probability table 7

MSB plane = 4

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3d00, 3d00, 3500, 3e00, 3500, 3f00, 3b00, 3e00,
MSB zero

3200, 3f00, 3a00, 3f00, 3d00, 3f00, 3b00,
3f00, 3f00, 3200, 3f00, 3500, 3e00, 3700, 3f00,
2d00, 3c00, 3000, 3f00, 3700, 3e00, 3400, 3f00,
3900, 2600, 2f00, 1e00, 2400, 1500, 3700, 3100,
1b00, 2600, 2300, 3a00, 3900, 3e00, 2b00, 2200,
2800, 2f00, 2500, 3e00, 3700, 3e00, 3d00, 3900,
1a00, 3300, 2500, 2800, 3c00, 3800, 2c00, 3d00,
3800, 3f00, 3b00, 3f00, 3a00, 1e00, 1b00, 1800,
1800, 3b00, 3a00, 1200, 2f00, 3f00, 3b00, 1b00,

zero

3500,

MSB-1

non-zero 2100,
3c00, 3e00, 3000, 3e00, 3100, 3a00, 3100, 3d00,
2c00, 3900, 2e00, 3c00, 2d00, 3c00, 3100, 3d00,
3100, 2100, 2c00, 2600, 2800, 1d00, 2b00, 2800,
2800, 2400, 2200, 2100, 2300, 2d00, 2500, 1f00,
2100, 2b00, 2700, 3200, 2d00, 3400, 2a00, 3500,
1800, 1800, 1f00, 1e00, 2e00, 2a00, 2400, 3000,
2b00, 3e00, 3d00, 3d00, 3a00, 1e00, 2b00, 2600,
1900, 3400, 3500, 1c00, 2600, 3300, 2a00, 1c00,

zero

2b00,

MSB-2

non-zero 2800, 2900, 2400,
3500, 3b00, 2900, 3b00, 2a00, 3100, 2700, 3b00,
2600, 2f00, 2400, 3400, 2300, 2d00, 2000, 3300,
2700, 1c00, 2400, 1c00, 1c00, 1900, 2700, 2800,
1b00, 1d00, 2000, 1b00, 1a00, 2300, 1d00, 1700,
1e00, 2400, 2100, 2b00, 2100, 2800, 2000, 2300,
1b00, 1500, 1b00, 1400, 1a00, 1a00, 2000, 2a00,
2200, 3700, 2f00, 3200, 2a00, 1700, 1700, 1600,
1900, 2500, 2300, 1500, 1900, 2500, 2200, 1400,

zero

1b00,

Others

non-zero 2d00, 2500, 2300, 2500, 2500, 2600, 2400,

Table 8.2.34 BSAC probability table 8

MSB plane = 4

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3b00, 3c00, 3400, 3c00, 3400, 3a00, 3000, 3c00,
MSB zero

3200, 3a00, 3100, 3c00, 3000, 3900, 2f00,
3500, 3800, 2c00, 3900, 2c00, 3400, 2b00, 3800,
2e00, 3400, 2d00, 3600, 2a00, 3300, 2800, 3100,
3100, 2600, 2900, 2000, 2300, 1f00, 2d00, 2600,
2000, 2600, 2300, 2500, 2100, 2c00, 2400, 1d00,
2500, 2400, 2400, 3000, 2800, 3000, 2900, 2200,
1e00, 1c00, 2500, 1d00, 2300, 2300, 2500, 3300,
2c00, 3700, 2b00, 3400, 2c00, 1e00, 1c00, 2100,
1b00, 2900, 2a00, 1d00, 2600, 3200, 2a00, 2000,

zero

2400,

MSB-1

non-zero 3200,
2900, 2e00, 2600, 2f00, 2600, 2d00, 2600, 2e00,MSB-2 zero
2500, 2b00, 2600, 2f00, 2300, 2a00, 2300, 2800,

98

2800, 2100, 2400, 2000, 2000, 1b00, 2400, 1f00,
1c00, 2100, 2200, 1d00, 1c00, 1f00, 1c00, 1900,
1e00, 2100, 2100, 2900, 2200, 2300, 2100, 1c00,
1a00, 1a00, 2100, 2100, 1c00, 1c00, 1f00, 2700,
2500, 2d00, 2700, 2a00, 2300, 1c00, 1d00, 1a00,
1a00, 1b00, 1d00, 1800, 2000, 2300, 1f00, 1900,
1c00,

non-zero 2b00, 2900, 2800,
1c00, 1e00, 1b00, 1e00, 1c00, 1e00, 1900, 1a00,
1f00, 1f00, 1900, 2000, 1a00, 1f00, 1700, 1b00,
1a00, 1900, 1800, 1900, 1800, 1600, 1900, 1a00,
1900, 1700, 1800, 1700, 1800, 1600, 1700, 1400,
1600, 1800, 1a00, 1c00, 1c00, 1c00, 1700, 1700,
1500, 1500, 1600, 1600, 1500, 1400, 1700, 1b00,
1a00, 2300, 1c00, 1d00, 1a00, 1600, 1600, 1500,
1400, 1800, 1500, 1300, 1700, 1900, 1600, 1400,

zero

1400,

Others

non-zero 2800, 2500, 2500, 2700, 2500, 2600, 2500,

Table 8.2.35 BSAC probability table 9

MSB plane = 5

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3d00, 3e00, 3300, 3e00, 3500, 3e00, 3700, 3e00,
MSB zero

3400, 3e00, 3500, 3f00, 3d00, 3f00, 3c00,
zero same as BSAC probability table 8

MSB-1
non-zero 2e00,

zero same as BSAC probability table 8
MSB-2

non-zero 2900, 2a00, 2700,
zero same as BSAC probability table 8

MSB-3
non-zero 2d00, 2500, 2400, 2500, 2400, 2500, 2300,

zero same as BSAC probability table 8
2800, 2500, 2300, 2300, 2200, 2200, 2200, 2200,Others

non-zero
2200, 2200, 2200, 2100, 2000, 2200, 2100,

Table 8.2.36 BSAC probability table 10

MSB plane = 5

Significance
decoded

higher bits
Probability Value of symbol ‚‘0‘ (Hexadecimal)

3b00, 3c00, 3400, 3c00, 3200, 3900, 2e00, 3d00,
MSB zero

3400, 3900, 2f00, 3c00, 2d00, 3700, 2d00,
zero same as BSAC probability table 8

MSB-1
non-zero 3100,

zero same as BSAC probability table 8
non-zero 2b00, 2a00, 2900,

zero same as BSAC probability table 8
non-zero 2700, 2600, 2500, 2500, 2500, 2200, 2200,

zero same as BSAC probability table 8
2200, 2300, 2300, 2300, 2200, 2300, 2200, 2300,

non-zero
2200, 2200, 2200, 2200, 2200, 2000, 2100,

Table 8.2.37 BSAC probability table 11
same as BSAC probability table 10, but MSB plane = 6

99

Table 8.2.38 BSAC probability table 12
same as BSAC probability table 11, but MSB plane = 6

Table 8.2.39 BSAC probability table 13
same as BSAC probability table 10, but MSB plane = 7

Table 8.2.40 BSAC probability table 14
same as BSAC probability table 11, but MSB plane = 7

Table 8.2.41 BSAC probability table 15
same as BSAC probability table 10, but MSB plane = 8

Table 8.2.42 BSAC probability table 16
same as BSAC probability table 10, but MSB plane = 9

Table 8.2.43 BSAC probability table 17
same as BSAC probability table 10, but MSB plane = 10

Table 8.2.44 BSAC probability table 18
same as BSAC probability table 10, but MSB plane = 11

Table 8.2.45 BSAC probability table 19
same as BSAC probability table 10, but MSB plane = 12

Table 8.2.46 BSAC probability table 20
same as BSAC probability table 10, but MSB plane = 13

Table 8.2.47 BSAC probability table 21
same as BSAC probability table 10, but MSB plane = 14

Table 8.2.48 BSAC probability table 22
same as BSAC probability table 10, but MSB plane = 15

8.3� Low delay coding mode

8.3.1� Introduction

The low delay coding functionality provides the ability to extend the usage of generic low bitrate audio coding to
applications requiring a very low delay of the encoding / decoding chain (e.g. full-duplex real-time communications).

This subpart specifies a low delay audio coder providing a mode with an algorithmic delay not exceeding 20 ms.

The overall algorithmic delay of a general audio coder is determined by the following factors:

• Frame length
For block-based processing, a certain amount of time has to pass to collect the samples belonging to one block

• Filterbank delay
Use of an analysis-synthesis filterbank pair causes a certain amount of delay.

• Look-ahead for block switching decision
Due to the underlying principles of the block switching scheme, the detection of transients has to use a certain amount
of “look-ahead” in order to ensure that all transient signal parts are covered properly by short windows.

• Use of bit reservoir
While the bit reservoir facilitates the use of a locally varying bitrate, this implies an additional delay depending on the
size of the bit reservoir relative to the average bitrate per block.

The overall algorithmic delay can be calculated as

100

TDELAY =
.&RAME + .&" + .LOOK _ AHEAD+ .BITRES

&S

where Fs is the coder sampling rate, NFrame is the frame size, NFB is the delay due to the filterbank (s), Nlook_ahead

corresponds to the look-ahead delay for block switching and Nbitres is the delay due to the use of the bit reservoir.

The basic idea of the low delay coder is to make use of the tools defined in 14496-3 as far as possible. The low delay
codec is derived from the MPEG-4 AAC LTP object type, i.e. a coder consisting of the low complexity AAC codec plus the
PNS (Perceptual Noise Substitution) and the LTP (Long Term Predictor) tools.

Figure 1 shows the overall structure of the decoder:

Bitstream
demultiplexer

Inverse
quantization Inverse

FSS

TNS
analysis

Filter

TNS
synthesis

Filter

Inverse
filter bank

Filter bank
Delay
buffer

Overlap
and add

bitstream reconstructed
time signal

pitch lag

parcor coefficients

spectral information

side information

Legend:

Figure 1: Decoder Structure

Figure 2 shows the overall structure of the encoder:

Filter
bank

TNS
LPC

analysis

-

FSS
control

TNS
analysis

filter

Quantization
and

coding

TNS
analysis

filter

Filter
bank

Long term
predictor

time
signal bitstream

Psycho-
acoustic
modell

Bitstream
multiplexer

Inverse
quantization

Inverse
FSS

TNS
synthesis

Filter

Inverse
filter bank

Figure 2: Encoder Structure

101

8.3.2� Syntax

This part defines the syntax of the low delay codec.

8.3.2.1� Bitstream syntax

The bitstream syntax for the low delay GA codec is identical to the syntax used for the AAC LTP object type as defined in
IS 14496-3 with the exception of ltp_data() which is modified as follows:

• The field for the LTP lag (ltp_lag) is reduced in size from 11 to 10 bits.

• A field is added (ltp_lag_update) allowing to keep the previous ltp_lag value.

Table 1-1 Syntax of ltp_data() for low delay codec:

Syntax No. of bits Mnemonic
ltp_data()
{
 if (AudioObjectType == AAC_LD) {
 ltp_lag_update 1 uimsbf
 if (ltp_lag_update)
 ltp_lag 10 uimsbf
 else
 ltp_lag = ltp_prev_lag
 } else {
 ltp_lag 11 uimsbf
 }
 ltp_coef 3 uimsbf
 if(window_sequence==EIGHT_SHORT_SEQUENCE) {
 for (w=0; w<num_windows; w++) {

 ltp_short_used[w] 1 uimsbf
 If (ltp_short_used [w]) {

 ltp_short_lag_present[w] 1
 }
 if (ltp_short_lag_present[w]) {

 ltp_short_lag[w] 4 uimsbf
 }
 }
 } else {
 for (sfb=0; sfb< max_sfb); sfb++) {
 ltp_long_used[sfb] 1 uimsbf
 }
 }
}

In order to retrieve the ltp_data in case of AAC_LD, the ics_info defined in IS 14496-3 must be extended to:

Table 1-1 Syntax of ltp_data() for low delay codec:

102

4ABLE��
���3YNTAX�OF�ICS?INFO�	

Syntax No. of bits Mnemonic
ics_info()
{

ics_reserved_bit 1 bslbf
window_sequence 2 uimsbf
window_shape 1 uimsbf
if(window_sequence == EIGHT_SHORT_SEQUENCE) {

max_sfb 4 uimsbf
scale_factor_grouping 7 uimsbf

}
else {

max_sfb 6 uimsbf
 if ((AudioObjectType == AAC_LTP) ||
 (AudioObjectType == AAC_LD)) {

predictor_data_present 1 uimsbf
if (predictor_data_present) {

ltp_data_present 1 uimsbf
if (ltp_data_present)

ltp_data()
if (common_window) {

ltp_data_present 1 uimsbf
if (ltp_data_present)

ltp_data()
}

}
} else { /* MPEG2 style AAC Predictor*/

predictor_data_present 1 uimsbf
if (predictor_data_present) {

predictor_reset 1 uimsbf
if (predictor_reset) {

predictor_reset_group_number 5 uimsbf
}
for (sfb=0; sfb<min(max_sfb,

PRED_SFB_MAX); sfb++) {
prediction_used[sfb] 1 uimsbf

}
}

}
}

}

8.3.2.2� Frame Length in GA specific configuration

The frameLength bit is interpreted as:

frameLength frame length in samples
0x0 512 (instead of 1024)
0x1 480 (instead of 960)

103

8.3.3� General information

8.3.3.1� Definitions

(no additional definitions)

8.3.4� Coder description

The low delay codec is defined by the following modifications with respect to the standard algorithm (i.e. IS 14496-3 AAC
LTP object) to achieve low delay operation:

8.3.4.1� Frame size/window length

The length of the analysis window is reduced to 1024 or 960 time domain samples corresponding to 512 and 480 spectral
values, respectively. The latter choice enables the coder to have a frame size that is commensurate with widely used
speech codecs (20 ms). The corresponding scalefactor band tables are shown below:

fs [kHz] 44.1, 48

num_swb_long_
window

36

swb swb_offset_lon
g_window

swb swb_offset_long_
window

0 0 19 92
1 4 20 100
2 8 21 112
3 12 22 124
4 16 23 136
5 20 24 148
6 24 25 164
7 28 26 184
8 32 27 208
9 36 28 236

10 40 29 268
11 44 30 300
12 48 31 332
13 52 32 364
14 56 33 396
15 60 34 428
16 68 35 460
17 76 512
18 84

Table 1: Scalefactor bands for 44.1 and 48 kHz, N=512

fs [kHz] 44.1, 48

num_swb_long_
window

35

swb swb_offset_lon
g_window

swb swb_offset_long_
window

0 0 18 88
1 4 19 96
2 8 20 108
3 12 21 120
4 16 22 132

104

5 20 23 144
6 24 24 156
7 28 25 172
8 32 26 188
9 36 27 212

10 40 28 240
11 44 29 272
12 48 30 304
13 52 31 336
14 56 32 368
15 64 33 400
16 72 34 432
17 80 480

Table 2: Scalefactor bands for 44.1 and 48 kHz, N=480

fs [kHz] 32
num_swb_long

_window
37

swb swb_offset_lon
g_

window

Swb swb_offset_long
_window

0 0 19 88
1 4 20 96
2 8 21 104
3 12 22 112
4 16 23 124
5 20 24 136
6 24 25 148
7 28 26 164
8 32 27 180
9 36 28 200

10 40 29 224
11 44 30 256
12 48 31 288
13 52 32 320
14 56 33 352
15 60 34 384
16 64 35 416
17 72 36 448
18 80 480

Table 3: Scalefactor bands for 32 kHz, N=480

fs [kHz] 32
num_swb_long

_window
37

swb swb_offset_lon
g

_window

swb swb_offset_long
_window

0 0 19 96
1 4 20 108
2 8 21 120
3 12 22 132
4 16 23 144
5 20 24 160
6 24 25 176
7 28 26 192
8 32 27 212
9 36 28 236

10 40 29 260

105

11 44 30 288
12 48 31 320
13 52 32 352
14 56 33 384
15 64 34 416
16 72 35 448
17 80 36 480
18 88 512

Table 4: Scalefactor bands for 32 kHz, N=512

fs [kHz] 24, 22.05
num_swb_long

_window
30

swb swb_offset_lon
g

_window

swb swb_offset_long
_window

0 0 16 92
1 4 17 104
2 8 18 120
3 12 19 140
4 16 20 164
5 20 21 192
6 24 22 224
7 28 23 256
8 32 24 288
9 36 25 320
10 40 26 352
11 44 27 384
12 52 28 416
13 60 29 448
14 68 480
15 80

Table 5: Scalefactor bands for 22.05 and 24 kHz, N=480.

fs [kHz] 24, 22.05
num_swb_long

_window
31

swb swb_offset_lon
g

_window

swb swb_offset_long
_window

0 0 16 92
1 4 17 104
2 8 18 120
3 12 19 140
4 16 20 164
5 20 21 192
6 24 22 224
7 28 23 256
8 32 24 288
9 36 25 320
10 40 26 352
11 44 27 384
12 52 28 416
13 60 29 448
14 68 30 480

106

15 80 512

Table 6: Scalefactor bands for 22.05 and 24 kHz, N=512

8.3.4.2� Block switching

Due to the contribution of the look-ahead time to the overall delay, no block switching is used.

8.3.4.3� Window shape

As stated in the previous chapter, block switching is not used in the low delay coder to keep the delay as low as possible.
As an alternative tool to improve coding of transient signals, the low delay coder uses the window shape switching feature
with a slight modification compared to normal-delay AAC: The low delay coder still uses the sine window shape, but the
Kaiser-Bessel derived window is replaced by a low-overlap window. As indicated by its name, this window has a rather low
overlap with the following window, thus being optimized for the use of the TNS tool to prevent preecho artefacts in case of
transient signals. For normal coding of non-transient signals the sine window is used because of its advantageous
frequency response.

In line with normal-delay AAC, the window_shape indicates the shape of the trailing part (i.e. the second half) of the
analysis window. The shape of the leading part (i.e. the first half) of the analysis window is identical to the window_shape
of the last block.

window_shape window
0x0 sine
0x1 low-overlap

The low-overlap window is defined by:

W(i) =

0 i = 0..3 ⋅ N / 16 −1

sin
π (i − 3 ⋅ N 16 + 0.5)

N 4


 


  i = 3 ⋅ N /16..5 ⋅ N /16 −1

1 i = 5 ⋅ N / 16..11 ⋅ N / 16 −1

sin
π (i − 9 ⋅ N 16 + 0.5)

N 4


 


  i = 11 ⋅ N /16..13 ⋅ N / 16 −1

0 i = 13 ⋅ N / 16..N −1















with . = 1024 or . = 960 .

8.3.4.4� Bit reservoir use

Use of the bit reservoir is minimized in order to reach the desired target delay. As one extreme case, no bit reservoir is
used at all.

107

8.3.4.5� Tables for Temporal Noise Shaping (TNS)

The following tables specify the value of TNS_MAX_BANDS for the low delay coder:

Frame Length 480 samples:

Sampling Rate TNS_MAX_BANDS
48000 31
44100 32
32000 37
24000 30
22050 30

Frame Length 512 samples:

Sampling Rate TNS_MAX_BANDS
48000 31
44100 32
32000 37
24000 31
22050 31

8.3.4.6� Further differences

Since the low delay codec is derived from the GA object, all used tools are defined already and the standard bitstream
syntax is used. In addition, the following optimizations of the LTP tool apply:

• The size of the LTP delay buffer size is scaled down proportionally with the frame size. Thus, the size is 2048 and 1920
samples for frame sizes of N=512 and N=480, respectively.

• Accordingly, the field for the LTP lag (ltp_lag in ltp_data()) is reduced in size from 11 to 10 bits.

• Due to the high consistency of the LTP lag for many signals, one additional bit is introduced signaling that the lag of the
previous frame is repeated (ltp_lag_update==0). Otherwise, a new value for the ltp lag is transmitted
(ltp_lag_update==1).

8.3.4.7� Other modes

Other variants of the low delay codec are derived by scaling down the frame size and the sampling rate by an integer
factor (e.g. 2, 3) resulting in an equivalent time/frequency resolution of the coder.

8.4� AAC Error resilience

8.4.1� Overview of tools

The virtual codebooks (VCB11) tool can extend the part of the bitstream demultiplexer that decodes the sectioning
information. The VCB11 tool gives the opportunity to detect serious errors within the spectral data of an MPEG-4 AAC
bitstream.

The input of the VCB11 tool is:

• The encoded section data using virtual codebooks

 The output of the VCB11 tool is:

108

• The decoded sectioning information as described in ISO/IEC 14496-3, subpart 4 (GA)

 The reversible variable length coding (RVLC) tool can replace the part of the noiseless coding tool that decodes the
Huffman and DPCM coded scalefactors. The RVLC tool is used to increase the error resilience for the scalefactor data
within an MPEG-4 AAC bitstream.

 The input of the RVLC tool is:

• The noiselessly coded scalefactors using RVLC

 The output of the RVLC tool is:

• The decoded integer representation of the scalefactors as described in ISO/IEC 14496-3, subpart 4 (GA)

The Huffman codeword reordering (HCR) tool can extend the part of the noiseless coding tool that decodes the Huffman
coded spectral data. The HCR tool is used to increase the error resilience for the spectral data within an MPEG-4 AAC
bitstream.

The input of the HCR tool is:

• The sectioning information for the noiselessly coded spectra as described in ISO/IEC 14496-3, subpart 4 (GA)

• The noiselessly coded spectral data in an error resilient reordered manner

• The length of the longest codeword within spectral_data

• The length of spectral_data

 The output of the HCR tool is:

• The quantized value of the spectra as described in ISO/IEC 14496-3, subpart 4 (GA)

8.4.2� Bitstream payload

Table 8-14: Syntax of individual_channel_stream ()

Syntax No. of bits Mnemonic
individual_channel_stream (common_window, scale_flag)
{

global_gain; 8 uimsbf
if (! common_window && ! scale_flag) {

ics_info ();
}
section_data ();
scale_factor_data ();
pulse_data_present; 1 uismbf
if (pulse_data_present) {

pulse_data ();
}
if (! scale_flag) {

tns_data_present; 1 uimsbf
if (tns_data_present) {

tns_data ();
}
gain_control_data_present; 1 uimsbf
if (gain_control_data_present) {

gain_control_data ();
}

109

}
if (! aacSpectralDataResilienceFlag) {

spectral_data ();
}
else {

length_of_reordered_spectral_data; 14 uimsbf
length_of_longest_codeword; 6 uimsbf
reordered_spectral_data ();

}
}

Table 8-15: Syntax of section_data ()

Syntax No. of bits Mnemonic
section_data()
{

if (window_sequence == EIGHT_SHORT_SEQUENCE) {
sect_esc_val = (1 << 3) – 1;

}
else {

sect_esc_val = (1 << 5) – 1;
}
for (g = 0; g < num_window_groups; g++) {

k = 0;
i = 0;
while (k < max_sfb) {

if (aacSectionDataResilienceFlag)
sect_cb[g][i]; 5 uimsbf

}
else {

sect_cb[g][i]; 4 uimsbf
}
sect_len = 0;
if (! aacSectionDataResilienceFlag ||

sect_cb < 11 || (sect_cb > 11 && sect_cb < 16)) {
while (sect_len_incr == sect_esc_val) { {3;5} uimsbf

sect_len += sect_esc_val;
}

}
else {

sect_len_incr = 1;
}
sect_len += sect_len_incr;
sect_start[g][i] = k;
sect_end[g][i] = k+sect_len;
for (sfb=k; sfb<k+sect_len; k++) {

sfb_cb[g][sfb] = sect_cb[g][i];
}

 k += sect_len;
i++;

}
num_sec[g] = i;

}
}

Table 8-16: Syntax of scalefactor_data ()

Syntax No. of bits Mnemonic
scale_factor_data()

110

{
if (! aacScalefactorDataResilienceFlag) {

noise_pcm_flag = 1;
for (g = 0; g < num_window_groups; g++) {

for (sfb = 0; sfb < max_sfb; sfb++) {
if (sect_cb[g][sfb] != ZERO_HCB) {

if (is_intensity (g, sfb)) {
hcod_sf[dpcm_is_position[g][sfb]]; 1..19 vlclbf

}
else {

if (is_noise(g, sfb)) {
if (noise_pcm_flag) {

noise_pcm_flag = 0;
dpcm_noise_nrg[g][sfb]; 9 uimsbf

}
else {
hcod_sf[dpcm_noise_nrg[g][sfb]]; 1..19 vlclbf
}

}
else {

hcod_sf[dpcm_sf[g][sfb]]; 1..19 vlclbf
}

}
}

}
}

}
else {

intensity_used = 0;
noise_used = 0;
sf_concealment; 1 uimsbf
rev_global_gain; 8 uimsbf
length_of_rvlc_sf; 11/9 uimsbf
for (g = 0; g < num_window_groups; g++) {

for (sfb=0; sfb < max_sfb; sfb++) {
if (sect_cb[g][sfb] != ZERO_HCB) {

if (is_intensity (g, sfb)) {
intensity_used = 1;
rvlc_cod_sf[dpcm_is_position[g][sfb]]; 1..9 vlclbf

}
else {

if (is_noise(g,sfb)) {
if (! noise_used) {

noise_used = 1;
dpcm_noise_nrg[g][sfb]; 9 uimsbf

}
else {

rvlc_cod_sf[dpcm_noise_nrg[g][sfb]]; 1..9 vlclbf
}

}
else {

rvlc_cod_sf[dpcm_sf[g][sfb]]; 1..9 vlclbf
}

}
}

}
}
if (intensity_used) {

rvlc_cod_sf[dpcm_is_last_position]; 1..9 vlclbf
}
sf_escapes_present; 1 uimsbf

111

if (sf_escapes_present) {
length_of_rvlc_escapes; 8 uimsbf
for (g = 0; g < num_window_groups; g++) {

for (sfb = 0; sfb < max_sfb; sfb++) {
if (sect_cb[g][sfb] != ZERO_HCB) {

if (is_intensity (g, sfb) &&
dpcm_is_position[g][sfb] == ESC_FLAG) {
rvlc_esc_sf[dpcm_is_position[g][sfb]]; 2..20 vlclbf

}
else {

if (is_noise (g, sfb) &&
dpcm_noise_nrg[g][sfb] == ESC_FLAG) {
rvlc_esc_sf[dpcm_noise_nrg[g][sfb]]; 2..20 vlclbf

}
else {

if (dpcm_sf[g][sfb] == ESC_FLAG) {
rvlc_esc_sf[dpcm_sf[g][sfb]]; 2..20 vlclbf

}
}

}
}

}
}
if (intensity_used &&

dpcm_is_position[g][sfb] == ESC_FLAG) {
rvlc_esc_sf[dpcm_is_last_position]; 2..20 vlclbf

}
}
if (noise_used) {
dpcm_noise_last_position; 9 uimsbf
}

}
}

Table 8-17: Syntax of reordered_spectral_data ()

Syntax No. of bits Mnemonic
reordered_spectral_data ()
{

/* complex reordering, see tool description of Huffman
codeword reordering */

}

8.4.3� Tool descriptions

8.4.3.1� Virtual Codebooks for AAC Section Data

8.4.3.1.1� Tool Description

Virtual codebooks are used to limit the largest absolute value permitted within a certain scale factor band where escape
values are allowed, i. e. where codebook 11 is used originally. This tool allows 17 different codebook indices (11, 16...31)
for the escape codebook. All these codebook indices refer to codebook 11. They are therefore called virtual codebooks.
The difference between these codebook indices is the allowed maximum of spectral values belonging to the appropriate
section. Due to this, errors within spectral data resulting in too large spectral values can be located and the according
spectral lines can be concealed.

8.4.3.1.2� Decoding Process

Within ISO/IEC 14496-3, subpart 4 (GA), section 5 (General Information), subsection 5.2 (Decoding of the GA bitstream
payloads), sub-subsection 5.2.3 (Decoding of an individual_channel_stream (ICS) and ics_info), sub-sub-subsection

112

5.2.3.2 (Decoding process) has to be applied. The paragraph (Recovering section_data ()) needs to be extended as
follows:

If the aacSectionDataResilienceFlag is set, sect_len is not transmitted but is set to one per default in case the codebook
for a section is 11 or in the range of 16 and 31.

8.4.3.1.3� Tables

In section 6 (GA-Tool Descriptions), subsection 6.3 (Noiseless coding), sub-subsection 6.3.4 (Tables), table 6.2 (Spectrum
Huffman codebooks parameters) needs to be extended as follows:

Table 8-18 – Spectrum Huffman codebooks parameters

Codebook number,
i

unsigned_cb[i] Dimension of
codebook

 LAV for codebook Codebook listed in
Table

0 - - 0 -
1 0 4 1 A.2
2 0 4 1 A.3
3 1 4 2 A.4
4 1 4 2 A.5
5 0 2 4 A.6
6 0 2 4 A.7
7 1 2 7 A.8
8 1 2 7 A.9
9 1 2 12 A.10

10 1 2 12 A.11
11 1 2 16 (with ESC 8191) A.12
12 - - (reserved) -
13 - - perceptual noise

substitution
-

14 - - intensity out-of-phase -
15 - - intensity in-phase -
16 1 2 16 (w/o ESC 15) A.12
17 1 2 16 (with ESC 31) A.12
18 1 2 16 (with ESC 47) A.12
19 1 2 16 (with ESC 63) A.12
20 1 2 16 (with ESC 95) A.12
21 1 2 16 (with ESC 127) A.12
22 1 2 16 (with ESC 159) A.12
23 1 2 16 (with ESC 191) A.12
24 1 2 16 (with ESC 223) A.12
25 1 2 16 (with ESC 255) A.12
26 1 2 16 (with ESC 319) A.12
27 1 2 16 (with ESC 383) A.12
28 1 2 16 (with ESC 511) A.12
29 1 2 16 (with ESC 767) A.12
30 1 2 16 (with ESC 1023) A.12
31 1 2 16 (with ESC 2047) A.12

8.4.3.2� RVLC for AAC Scalefactors

8.4.3.2.1� Tool Description

RVLC (reversible variable length coding) is used instead of Huffman coding to achieve entropy coding of the scalefactors,
because of its better performance in terms of error resilience. It can be considered to be a plug-in of the noiseless coding
tool defined in ISO/IEC 14496-3, subpart 4 (GA), which allows decoding error resilient encoded scalefactor data.

RVLC enables additional backward decoding. Some error detection is possible in addition because not all nodes of the
coding tree are used as codewords. The error resilience performance of the RVLC is as better as smaller the number of
codewords. Therefore the RVLC table contains only values from -7 to +7, whereas the original Huffman codebook contains
values from -60 to +60. A decoded value of ±7 is used as ESC_FLAG. It signals that an escape value exists, that has to be
added to +7 or subtracted from -7 in order to find the actual scalefactor value. This escape value is Huffman encoded.

113

It is necessary to transmit an additional value in order to have a starting point for backward decoding for the DPCM
encoded scalefactors. This value is called reversible global gain. If intensity stereo coding or PNS is used, additional
values are also necessary for them. The length of the RVLC bitstream part has to be transmitted to allow backward
decoding. Furthermore the length of the bitstream part containing the escape codewords should be transmitted to keep
synchronization in case of bitstream errors.

8.4.3.2.2� Definitions

The following bitstream elements are available within the bitstream, if the GASpecificConfig enables the RVLC tool.

sf_concealment is a data field that signals whether the scalefactors of the last frame are similar to the
current ones or not. The length of this data field is 1 bit.

rev_global_gain contains the last scalefactor value as a start value for the backward decoding. The length
of this data field is 8 bits.

length_of_rvlc_sf is a data field that contains the length of the current RVLC data part in bits, including the
DPCM start value for PNS. The length of this data field depends on window_sequence: If
window_sequence == EIGHT_SHORT_SEQUENCE, the field consists of 11 bits,
otherwise it consists of 9 bits.

rvlc_cod_sf RVLC word from the RVLC table used for coding of scalefactors, intensity positions or
noise energy.

sf_escapes_present is a data field that signals whether there are escapes coded in the bitstream or not. The
length of this data is 1 bit.

length_of_rvlc_escapes is a data field that contains the length of the current RVLC escape data part in bits. The
length of this data is 8 bits.

rvlc_esc_sf Huffman codeword from the Huffman table for RVLC-ESC-values used for coding values
larger than ±6.

dpcm_is_last_position DPCM value allowing backward decoding of Intensity Stereo data part. It is the symmetric
value to dpcm_is_position.

dpcm_noise_last_position DPCM value allowing backward decoding of PNS data part. The length of this data is 9 bit.
It is the symmetric value to dpcm_noise_nrg.

8.4.3.2.3� Decoding Process

Within ISO/IEC 14496-3, subpart 4 (GA), section 6 (GA-Tool Descriptions), subsection 6.2 (Scalefactors), sub-subsection
6.2.3 (Decoding process), sub-sub-subsection 6.2.3.2 (Decoding of scalefactors) has to be applied. The following
paragraphs have to be added:

In case of error resilient scalefactor coding, a RVLC has been used instead of a Huffman code. The decoding process of
the RVLC words is the same as for the Huffman codewords; just another codebook has to be used. This codebook uses
symmetric codewords. Due to this it is possible to detect errors, because asymmetric codewords are illegal. Furthermore,
decoding can be started at both sides. To allow backward decoding, an additional value is available within the bitstream,
which contains the last scalefactor value. In case of intensity an additional codeword is available, which allows backwards
decoding. In case of PNS an additional DPCM value is available for the same reason.

A decoded value of ±7 is used as ESC_FLAG. It signals that an escape value exists, that has to be added to +7 or
subtracted from -7 in order to find the actual scalefactor value. This escape value is Huffman encoded.

114

8.4.3.2.4� Tables

Table 8-19 - RVLC codebook

index length codeword
-7 7 65
-6 9 257
-5 8 129
-4 6 33
-3 5 17
-2 4 9
-1 3 5
0 1 0
1 3 7
2 5 27
3 6 51
4 7 107
5 8 195
6 9 427
7 7 99

Table 8-20 – asymmetric (forbidden) codewords

length codeword
6 50
7 96
9 256
8 194
7 98
6 52
9 426
8 212

115

Table 8-21 – Huffman codebook for RVLC escape values

index length codeword
0 2 2
1 2 0
2 3 6
3 3 2
4 4 14
5 5 31
6 5 15
7 5 13
8 6 61
9 6 29

10 6 25
11 6 24
12 7 120
13 7 56
14 8 242
15 8 114
16 9 486
17 9 230
18 10 974
19 10 463
20 11 1950
21 11 1951
22 11 925
23 12 1848
24 14 7399
25 13 3698
26 15 14797
27 20 473482
28 20 473483
29 20 473484
30 20 473485
31 20 473486
32 20 473487
33 20 473488
34 20 473489
35 20 473490
36 20 473491
37 20 473492
38 20 473493
39 20 473494
40 20 473495
41 20 473496
42 20 473497
43 20 473498
44 20 473499
45 20 473500
46 20 473501
47 20 473502
48 20 473503
49 19 236736
50 19 236737
51 19 236738
52 19 236739
53 19 236740

8.4.3.3� Huffman Codeword Reordering for AAC Spectral Data

8.4.3.3.1� Tool Description

The Huffman codeword reordering (HCR) algorithm for AAC spectral data is based on the fact that some of the codewords
can be placed at known positions so that these codewords can be decoded independent of any error within other
codewords. Therefore, this algorithm avoids error propagation to those codewords, the so-called priority codewords

116

(PCW). To achieve this, segments of known length are defined and those codewords are placed at the beginning of these
segments.

The remaining codewords (non-priority codewords, non-PCW) are filled into the gaps left by the PCWs using a special
algorithm that minimizes error propagation to the non-PCWs codewords.

This reordering algorithm does not increase the size of spectral data.

Before applying the reordering algorithm itself, a pre-sorting process is applied to the codewords. It sorts all codewords
depending on their importance, i. e. it determines the PCWs.

8.4.3.3.2� Definitions

The following bitstream elements are available within the bitstream, if the GASpecificConfig enables the HCR tool.

length_of_longest_codeword is a 6-bit data field that contains the length of the longest codeword available within the
current spectral data in bits. This field is used to decrease the distance between protected codewords.
Valid values are between 0 and 49. Values between 50 and 63 are reserved for future use. If those
values occur, current decoders have to replace them by 49.

length_of_reordered_spectral_data is a 14-bit data field that contains the length of spectral data in bits. The maximum
value is 6144 in case of a single_channel_element, a coupling_channel_element and a
lfe_channel_element and 12288 in case of a channel_pair_element. Larger values are reserved for
future use. If those values occur, current decoders have to replace them by the valid maximum value.

8.4.3.3.3� Bitstream Structure

8.4.3.3.3.1� Pre-Sorting

Within ISO/IEC 14496-3, subpart 4 (GA), section 5 (General Information), subsection 5.2 (Decoding of the GA Bitstream
Payloads), sub-subsection 5.2.3 (Decoding of an individual_channel_stream (ICS) and ics_info), sub-sub-subsection
5.2.3.5 (Order of spectral coefficients in spectral data), is not valid if this tool is used. Instead, the procedure described in
the following paragraphs has to be applied:

For explanation of the pre-sorting steps the term „unit“ is introduced. A unit covers four spectral lines, i. e. two two-
dimensional codewords or one four-dimensional codeword.

In case of one long window (1024 spectral lines per long block, one long block per frame), each window contains 256
units.

In case of eight short windows (128 spectral lines per short block, eight short blocks per frame), each window contains 32
units.

First pre-sorting step:

Units representing the same part of the spectrum are collected together in temporal order and denoted as unit
group. In case of one long window, each unit group contains one unit. In case of eight short windows, each unit
group contains eight units.

Unit groups are collected ascending in spectral direction. For one long window, that gives the original codeword
order, but for eight short windows a unit based window interleaving has been applied.

Using this scheme, the codewords representing the lowest frequencies are the first codewords within spectral data
for both, long and short blocks.

Table 8-22 shows an example output of the first pre-sorting step for short blocks, assuming two-dimensional
codebooks for window 0, 1, 6, and 7 and four-dimensional codebooks for window 2, 3, 4, and 5.

Second pre-sorting step:

The more energy a spectral line contains, the more audible is its distortion. The energy within spectral lines is
related to the used codebook. Codebooks with low numbers can represent only low values and allow only small
errors, while codebooks with high numbers can represent high values and allow large errors.

117

Therefore, the codewords are pre-sorted depending on the used codebook. If the error resilient section data is used,
the order is 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 11, 9/10, 7/8, 5/6, 3/4, 1/2. If the normal
section data is used, the order is 11, 9/10, 7/8, 5/6, 3/4, 1/2. This order is based on the largest absolute value of the
tables. This second pre-sorting step is done on the described unit by unit base used in the first pre-sorting step. The
output of the first pre-sorting step is scanned in a consecutive way for each codebook.

These two pre-sorting steps can be done by assigning numbers to units according the following metric:

codebookPriority[27] = {0,0,1,1,2,2,3,3,4,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}

assignedUnitNr = (codebookPriority[cb] * maxNrOfLinesInWindow
 + nrOfFirstLineInUnit) * MaxNrOfWindows + window

with:

codebookPriority[cb] codebook priority according the second pre-sorting step.

maxNrOfLinesInWindow constant number: 1024 in case of one long window and 128 in case of eight short windows

nrOfFirstLineInUnit a number between 0 and 1020 in case of one long window and between 0 and 124 in case of
eight short windows (this number os always a multiple of four)

maxNrOfWindwos constant number: 1 in case of one long window and 8 in case of eight short windows

window always 0 in case of one long window, a number between 0 and 7 in case of eight short windows

and sort the units in ascending order using these assigned unit numbers.

Encoder note: In order to reduce audible artifacts in case of errors within spectral data it is strongly recommended to use
table 11 only if necessary!

8.4.3.3.3.2� Derivation of Segment Width

The segment widths depend on the Huffman codebook used. They are derived as the minimums of the (codebook
dependent) maximum codeword length and the transmitted longest codeword length:

segmentWidth = min (maxCwLen, longestCwLen)

Table 8-23 shows the values of maxCwLen depending on the Huffman codebook.

8.4.3.3.3.3� Order of Huffman Codewords in Spectral Data

Figure 8.4.1 shows the general scheme of the segmentation and the arrangement of the PCWs. In this figure, five
segments can be provided to protect codewords from section 0 and section 1 against error propagation. Segment widths
are different, because the length of the longest possible codeword depends on the current codebook.

The writing scheme for the non-PCWs is as follows (PCWs have been written already):

The proposed scheme introduces the term set. A set contains a certain number of codewords. Assuming N is the number
of segments; all sets except the last one contain N codewords. Non-PCWs are written consecutively into these sets. Due
to the pre-sorting algorithm set one contains the most important non-PCWs. The importance of the codewords stored
within a set is the smaller the higher the set number.

Sets are written consecutively. Writing of a set might need several trials.

First trial: The first codeword of the current set is written into the remaining part of the first segment, the second codeword
into the remaining part of the second segment and so on. The last codeword of the current set is written into the remaining
part of the last segment.

Second trial: The remaining part of the first codeword (if any) is written into the remaining part of the second segment, the
remaining part of the second codeword (if any) into the remaining part of the third segment and so on. The remaining part
of the last codeword (if any) is written into the remaining part of the first segment (modulo shift).

118

If a codeword does not fit into the remaining part of a segment, it is only partly written and its remaining part is stored. At
least after a maximum of N trials all codewords are completely written into segments.

If one set was written completely, writing of the next set starts. To improve the error propagation behavior between
consecutive sets, the writing direction within segments changes from set to set. While PCWs are written from left to right,
codewords of set one are written from right to left, codewords of set two are again written from left to right and so on.

8.4.3.3.3.4� Encoding Process

The structure of the reordered spectral data cannot be described within the C like syntax commonly used. Therefore,
Figure 8.4.2 shows an example and the following c-like description is provided:

/* helper functions */
void InitReordering(void);
 /* Initializes variables used by the reordering functions like the segment
 widths and the used offsets in segments and codewords. */

void InitRemainingBitsInCodeword(void);
 /* Initializes remainingBitsInCodeword[] array for each codeword with
 the total size of the codeword. */

int WriteCodewordToSegment(codewordNr, segmentNr, direction);
 /* Writes a codeword or only a part of a codeword indexed by codewordNr
 to the segment indexed by segmentNr with a given direction.
 Write offsets for each segment are handled internally.
 The function returns the number of bits written to the segment.
 This number may be lower than the codeword length.
 WriteCodewordToSegment handles already written parts of the codeword
 internally. */

void ToggleWriteDirection(void);
 /* Toggles the write direction in the segments between forward and backward. */

/* (input) variables */
numberOfCodewords; /* 15 in the example */
numberOfSegments; /* 6 in the example */
numberOfSets; /* 3 in the example */

ReorderSpectralData()
{
 InitReordering();
 InitRemainingBitsInCodeword();

 /* first step: write PCWs (set 0) */
 writeDirection = forward;
 for (codeword = 0; codeword < numberOfSegments; codeword ++) {
 WriteCodewordToSegment(codeword, codeword, writeDirection);
 }

 /* second step: write nonPCWs */
 for (set = 1; set < numberOfSets; set++) {
 ToggleWriteDirection();
 for (trial = 0; trial < numberOfSegments; trial++) {
 for (codewordBase = 0; codewordBase < numberOfSegments; codewordBase++) {
 segment = (trial + codewordBase) % numberOfSegments;
 codeword = codewordBase + set*numberOfSegments;

 if (remainingBitsInCodeword[codeword] > 0) {
 remainingBitsInCodeword[codeword] -= WriteCodewordToSegment(codeword,
 segment,
 writeDirection);

119

 }
 }
 }
 }
}

8.4.3.3.4� Decoding Process

Within ISO/IEC 14496-3, subpart 4 (GA), section 5 (General Information), subsection 5.2 (Decoding of the GA Bitstream
Payloads), sub-subsection 5.2.3 (Decoding of an individual_channel_stream (ICS) and ics_info), sub-sub-subsection
5.2.3.2 (Decoding process), has to be applied. The paragraph (Decoding an individual_channel_stream (ICS)) needs to be
extended as follows:

In the individual_channel_stream, the order of decoding is:

• get global_gain

• get ics_info (parse bitstream if common information is not present)

• get section_data, if present

• get scalefactor_data, if present

• get pulse_data, if present

• get tns_data, if present

• get gain control data, if present

• get length_of_longest_codeword, if present

• get length_of_spectral_data, if present

• get spectral_data, if present.

Within ISO/IEC 14496-3, subpart 4 (GA), section 5 (General Information), subsection 5.2 (Decoding of the GA Bitstream
Payloads), sub-subsection 5.2.3 (Decoding of an individual_channel_stream (ICS) and ics_info), sub-sub-subsection
5.2.3.2 (Decoding process) has to be applied. The paragraph (spectral_data () parsing and decoding) needs to be
extended as follows:

If the HCR tool is used, spectral data does not consist of consecutive codewords anymore. Concerning HCR, the whole
data necessary to decode two or four lines are referred as codeword. This includes Huffman codeword, sign bits, and
escape sequences.

Within ISO/IEC 14496-3, subpart 4 (GA), section 6 (GA-Tool Descriptions), subsection 6.3 (Noiseless coding), sub-
subsection 6.3.3 (Decoding process) has to be applied. The following paragraphs have to be added:

Decoding of reordered spectral data cannot be done straightforward. The following c-like description shows the decoding
process:

/* helper functions */
void InitReordering(void);
 /* Initializes variables used by the reordering functions like the segment
 widths and the used offsets in segments and codewords */

void InitRemainingBitsInSegment(void);
 /* Initializes remainingBitsInSegment[] array for each segment with the

120

 total size of the segment */

int DecodeCodeword(codewordNr, segmentNr, direction);
 /* Try to decode the codeword indexed by codewordNr usind data already read
 for this codeword and using data from the segment index by segmentNr.
 The read direction in the segment is given by direction.
 DecodeCodeword returns the number of bits read from the indexed segment. */

void MoveFromSegmentToCodeword(codewordNr, segmentNr, bitLen, direction);
 /* Move bitLen bits from the segment indexed by segmentNr to the codeword
 indexed by codewordNr using direction as read direction in the segment.
 The bits are appended to existing bits for the codeword and the codeword
 length is adjusted. */

void AdjustOffsetsInSegment(segmentNr, bitLen, direction);
 /* Like MoveFromSegmentToCodeword(), but no bits are moved. Only the offsets
 for the segment indexed by segmentNr are adjusted according bitLen and
 direction. */

void MarkCodewordAsDecoded(codewordNr);
 /* Marks the codeword indexed by codewordNr as decoded. */

bool CodewordIsNotDecoded(codewordNr);
 /* Returns TRUE if the codeword indexed by codewordNr is not decoded. */

void ToggleReadDirection(void);
 /* Toggles the read direction in the segments between forward and backward. */

/* (input) variables */
numberOfCodewords;
numberOfSegments;
numberOfSets;

DecodeReorderedSpectralData()
{
 InitReordering();
 InitRemainingBitsInSegment();

 /* first step: decode PCWs (set 0) */
 readDirection = forward;
 for (codeword = 0; codeword < numberOfSegments; codeword++) {
 cwLen = DecodeCodeword(codeword, codeword, readDirection);
 if (cwLen <= remainingBitsInSegment[codeword]) {
 AdjustOffsetsInSegment(codeword, cwLen, readDirection);
 MarkCodewordAsDecoded(codeword);
 remainingBitsInSegment[codeword] -= cwLen;
 }
 else {
 /* error !!! (PCWs do always fit into segments) */
 }
 }

 /* second step: decode nonPCWs */
 for (set = 1; set < numberOfSets; set++) {
 ToggleReadDirection();
 for (trial = 0; trial < numberOfSegments; trial++) {
 for (codewordBase = 0; codewordBase < numberOfSegments; codewordBase++) {
 segment = (trial + codewordBase) % numberOfSegments;
 codeword = codewordBase + set*numberOfSegments;

 if (CodewordIsNotDecoded(codeword) &&

121

 (remainingBitsInSegment[segment] > 0)) {
 cwLenInSegment = DecodeCodeword(codeword, segment, readDirection);
 if (cwLenInSegment <= remainingBitsInSegment[segment]) {
 AdjustOffsetsInSegment(segment, cwLenInSegment, readDirection);
 MarkCodewordAsDecoded(codeword);
 remainingBitsInSegment[segment] -= cwLenInSegment;
 }
 else { /* only part of codeword in segment */
 MoveFromSegmentToCodeword(codeword,
 segment,
 remainingBitsInSegment[segment],
 readDirection);
 remainingBitsInSegment[segment] = 0;
 }
 }
 }
 }
 }
}

8.4.3.3.5� Tables

Table 8-22 - Example output of the first pre-sorting step for short blocks, assuming two-dimensional codebooks
for window 0, 1, 6, and 7 and four-dimensional codebooks for window 2, 3, 4, and 5

index codeword entry
window window

index
0 0 0
1 0 1
2 1 0
3 1 1
4 2 0
5 3 0
6 4 0
7 5 0
8 6 0
9 6 1
10 7 0
11 7 1
12 0 2
13 0 3
14 1 2
15 1 3
16 2 1
17 3 1
18 4 1
19 5 1
20 6 2
21 6 3
22 7 2
23 7 3
… … …

122

Table 8-23 - values of maxCwLen depending on the Huffman codebook

codebook maximum codeword length
(maxCwLen)

0 0
1 11
2 9
3 20
4 16
5 13
6 11
7 14
8 12
9 17
10 14
11 49
16 14
17 17
18 21
19 21
20 25
21 25
22 29
23 29
24 29
25 29
26 33
27 33
28 33
29 37
30 37
31 41

8.4.3.3.6� Figures

1 3 4 5

ORIGINAL�SPECTRAL?DATA�	

REORDERED�SPECTRAL?DATA�	

Codewords not influenced by errors within other codewords (PCWs)

Remaining codewords (non-PCWs)

segment width
for section 0

2

1 2 3 4 5

section 0, table n is used section 1, table m is used

segment width
for section 1

section 0 section 3section 2section 1

Figure 8.4.1 - general scheme of segmentation and arrangement of PCWs

123

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6

1 2 8 3 9 4 10 5 11 6 127a

1 2 7b 8 3 9 4 10 5 11 6 127a

1 2 7b 8 3 15a 9 4 10 5 11 6 127a

1 2 7b 8 3 15a 9 4 15b 10 5 11 6 127a

1 2 7b 8 3 15a 9 4 15b 10 5 14a 11 6 127a

1 2 7b 8 3 15a 9 4 15b 10 5 14a 11 6 14b 127a

1 2 7b 8 3 15a 9 4 15b 10 5 14a 11 6 14b 13 127a

21 3 4 5 6

21 3 4 5 6

set 1, trial 0 (writing cw 7 in seg 1, cw 8 in seg 2, cw 9 in seg 3, cw 10 in seg 4, cw 11 in seg 5, cw 12 in seg 6); store cw 7b
21 3 4 5 6

21 3 4 5 6

set 2, trial 0 (writing cw 13 in seg 1, cw 14 in seg 2, cw 15 in seg 3); store cw 13, cw 14, cw 15b
21 3 4 5 6

set 2, trial 1 (writing cw 13 in seg 2, cw 14 in seg 3, cw 15 in seg 4); store cw 13, cw 14
21 3 4 5 6

set 2, trial 2 (writing cw 13 in seg 3, cw 14 in seg 4); store cw 13, cw 14

21 3 4 5 6

set 2, trial 4 (writing cw 13 in seg 5, cw 14 in seg 6); store cw 13

set 2, trial 3 (writing cw 13 in seg 4, cw 14 in seg 5); store cw 13, cw 14b

21 3 4 5 6

set 2, trial 5 (writing cw 13 in seg 6)

set 1set 0 set 2

write PCWs (set 0)

set 1, trial 1 (writing cw 7 in seg 2)

Figure 8.4.2 - example for HCR encoding algorithm (only one segment width, pre-sorting has been done before)

124

9� Error protection

9.1� Overview of the tools

The error protection tool (EP tool) provides the unequal error protection (UEP) capability to the ISO/IEC 14496-3 codecs.
The main features of EP tool are follows:

n providing a set of error correcting/detecting codes with wide and small-step scalability, in performance and in
redundancy

n providing a generic and bandwidth-efficient error protection framework, which covers both fixed-length frame
bitstreams and variable-length frame bitstream

n providing a UEP configuration control with low overhead

The stream type ERROR_PROTECTION_STREAM is defined. This stream consist of error protection frames.

The basic idea of UEP is to divide the frame into sub-frames according to the bit error sensitivities (these sub-frames are
referred to be as classes in the following sections), and to protect these sub-frames with appropriate strength of FEC
and/or CRC. If this would not be done, the decoded audio quality is determined by how the most error sensitive part is
corrupted, and thus the strongest FEC/CRC has to be applied to the whole frame, requiring much more redundancy.

In order to apply UEP to audio frames, the following information is required:

1. Number of classes

2. Number of bits each class contains

3. The CRC code to be applied for each class, which can be presented as a number of CRC bits

4. The FEC code to be applied for each class

This information is called as “frame configuration parameters” in the following sections. The same information is used to
decode the UEP encoded frames; thus they have to be transmitted. To transmit them effectively, the frame structures of
MPEG-4 audio algorithms have been taken into account for this EP tool.

The MPEG-4 audio frame structure can be categorized into three different approaches from the viewpoint of UEP
application:

1. All the frame configurations are constant while the transmission (as CELP).

2. The frame configurations are restricted to be one of the several patterns (as Twin-VQ).

3. Most of the parameters are constant during the transmission, but some parameters can be different frame by frame (as
AAC).

To utilize these characteristics, the EP tool uses two paths to transmit the frame configuration parameters. One is the out-
of-band signaling, which is the same way as the transmission of codec configuration parameters. The parameters that are
shared by the frames are transmitted through this path. In case there are several patterns of configuration, all these
patterns are transmitted with indices. The other is the in-band transmission, which is made by defining the EP-frame
structure with a header. Only the parameters that are not transmitted out-of-band are transmitted through this path. With
this parameter transmission technique, the amount of in-band information, which is a part of the redundancy caused by
the EP tool, is minimized.

With these parameters, each class is FEC/CRC encoded and decoded. To enhance the performance of this error
protection, an interleaving technique is adopted. The objective of interleaving is to randomize burst errors within the

125

frames, and this is not desirable for the class that is not protected. This is because there are other error resilience tools
whose objective is to localize the effect of the errors, and randomization of errors with interleaving would have a harmful
influence on such part of bitstream.

The outline of the EP encoder and EP decoder is figured out in Figure 9.1.1 and Figure 9.1.2.

E
rr

or
Pr

ot
ec

tio
n_

Sp
ec

if
ic

In
fo

()

Audio Bitstreams
(Data for each class)

Class Information
(as side info. to the
bitstream)

Audio Codec

…..

Control

CRC
encoder

CRC
encoder

SRCPC
encoder

SRCPC
encoder

Interleaver

Header

SRS
encoder

ERROR_PROTECTION_STREAM

Scope of EP tool

…..

…..

Figure9.1. 1 outline of EP encoder

ErrorProtection_SpecificInfo()

Audio Bitstreams/
Class ErrorCheck

Audio Codec

CRC
decoder

CRC
decoder

SRCPC
decoder

SRCPC
decoder

De-interleaver
Header

SRS
decoder

ERROR_PROTECTION_STREAM

Control

….Scope of EP tool

….

….

Figure9.1. 2 outline of EP decoder

126

9.2� Syntax

9.2.1� Error protection Specific Configuration

This part defines the syntax of the specific configuration for error protection.

4ABLE��������3YNTAX�OF�%RROR0ROTECTION?3PECIFIC#ONFIG�	

Syntax No. of bits Mnemonic
ErrorProtection_SpecificConfig()
{

number_of_predefined_set 4
Interleave_type 2

 bit_stuffing 3
 number_of_concatenated_frame 3 uimsbf
 For(i=0; i<number_of_predefined_set; i++){

 number_of_class[i] 6
 For(j=0; j<number_of_class[i]; j++){

 length_escape[i][j] 1
 rate_escape[i][j] 1
 crclen_escape[i][j] 1
 concatenate_flag[I][j] 1
 if (interleave_type == 2)
 interleave_switch[i][j] 1
 }
 if(length_escape[i][j] == 1) /* ESC */
 number_of_bits_for_lentgh[i][j] 4
 else
 class_length[i][j] 16
 if(rate_escape[i][j] != 1) /* not ESC */
 class_rate[i][j] 5
 if(crclen_escape[i][j] != 1) /* not ESC */
 class_crclen[i][j] 5
 }
 }
 header_protection 1
 if(header_protection == 1){
 header_rate[i][j] 5
 header_crclen[i][j] 5
 }
 rs_fec_capability 7
}

9.2.2� Error protection bitstream payloads

This part defines the syntax of the stream type “Error Protection Stream“ which consists of the Error Protection Frames.
Note that this stream is common for all algorithms.

4ABLE��������3YNTAX�OF�RS?EP?FRAME��	

Syntax No. of bits Mnemonic
rs_ep frame()
{
 ep_frame()
 rs_parity_bits Nrsparity bslbf
}

Nrsparity: see section 9.4.7

127

Table 9.2. 3 Syntax of ep_frame ()

Syntax No. of bits Mnemonic
ep_frame()
{

if (interleave_type == 0){
ep_header()
ep_encoded_classes()

}
if (interleave_type == 1){

interleaved_frame_mode1 1 - bslbf
}
if (interleave_type == 2){

interleaved_frame_mode2 1 - bslbf
}
stuffing_bits Nstuff bslbf

}

4ABLE��������3YNTAX�OF�EP?HEADER��	

Syntax No. of bits Mnemonic
ep_header()
{

choice_of_pred Npred uimsbf
choice_of_pred_parity Npred_parity bslbf
class_attrib()
class_attrib_parity Nattrib_parity bslbf

}
Npred: : the smallest integer value greater than

 log2 (# of predefined set).

Npred_parity : See section 9.4.2

Nattrib_parity : See section 9.4.2

4ABLE�������3YNTAX�OF�CLASS?ATTRIB��	

Syntax No. of bits Mnemonic
class_attrib(class_count, length_escape,
rate_escape, crclen_escape)
{

for(i=1; i<=class_count; i++){

if (length_escape[i] == 1){
class_bit_count[i] Nbitcount uimsbf

}
if (rate_escape[i] == 1){

class_code_rate[i] 3 uimsbf
}
if (crclen_escape == 1){

class_crc_count[i] 3 uimsbf
}

}

128

if (bit_stuffing == 1){
num_stuffing_bits 3 uimsbf

}
}

4ABLE�������3YNTAX�OF�EP?ENCODED?CLASSES��	

Syntax No. of bits Mnemonic
ep_encoded_classes(class_count)
{

for(i=1; i<=class_count; i++){

ep_encoded_class[i] bslbf

}
}

9.3� General information

9.3.1� Definitions

ErrorProtection_SpecificConfig (): Error protection specific configuration that is out of band information.

NUMBER?OF?PREDEFINED?SET�� The number of pre-defined set.

INTERLEAVE?TYPE� Type 0 is non-interleaving.
Type 1 is intra-frame interleaving, except the last class (which is usually non-protected).
Type 2 is Class-by-class interleaving on/off

Type3 and above are for future use.

BIT?STUFFING� Signals whether the bit stuffing to ensure the byte alignment is used with the in-band information or not:
1 indicates the bit stuffing is used
0 indicates the bit stuffing is not used. This implies that the configuration provided with the out-of-band information ensure
the EP-frame is byte-aligned.

NUMBER?OF?CONCATENATED?FRAME��The number of concatenated source coder frames for the constitution of one error
protected frame.

Codeword 000 001 010 011 100 101 110 111

number of
concatena
ted frame

reserv
ed

1 2 3 4 5 6 7

NUMBER?OF?CLASS;I=� The number of classes for i-th predefined set.

LENGTH?ESCAPE;I=;J=� If 0, the length of j-th class in i-th pre-defined set is fixed value. If 1, the length is variable. Note
that in case “until the end”, this value should be 1, and the number_of_bits value should be 0.

RATE?ESCAPE;I=;J=� If 0, the SRCPC code rate of j-th class in i-th pre-defined set is fixed value. If 1, the code rate is
signaled in band.

CRCLEN?ESCAPE;I=;J=� If 0, the CRC length of j-th class in i-th pre-defined set is fixed value. If 1, the CRC length is
signaled in band.

129

CONCATENATE?FLAG;I=;J=� This parameter defines whether j-th class of i-th pre-defined set is concatenated or not. 0
indicates “not concatenated” and 1 indicates “concatenated”. See section 9.4.3

INTERLEAVE?SWITCH;I=;J=� This parameter defines whether j-th class of i-th pre-defined set is interleaved or not. 0
indicates “not interleaved” and 1 indicates “interleaved”.

TERMINATION?SWITCH;I=;J=� This parameter defines whether j-th class of i-th pre-defined set is terminated or not when
it is SRCPC encoded.

NUMBER?OF?BITS?FOR?LENGTH;I=;J=� This field exists only when the length_escape[i][j] is 1. This value shows the
number of bits for the class length in-band signaling. This value should be set considering possible maximum length of the
class.

CLASS?LENGTH;I=;J=� This field exists only when the length_escape[i][j] is 0. This value shows the length of the j-th class
in i-th pre-defined set, which is the fixed value while the transmission.

 CLASS?RATE;I=;J=� This field exists only when the rate_escape[i][j] is 0. This value shows the SRCPC code rate of the
j-th class in i-th pre-defined set, which is the fixed value while the transmission. The value from 0 to 24 corresponds to the
code rate from 8/8 to 8/32, respectively.

 CLASS?CRCLEN;I=;J=� This field exists only when the crclen_escape[i][j] is 0. This value shows the CRC length of the j-th
class in i-th pre-defined set, which is the fixed value while the transmission. The value should be
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,24 or 32. (See section 9.4.4)

 HEADER?PROTECTION� This value indicates the header error protection mode. 0 indicates the use of basic set of FEC,
and 1 indicates the use of extended header error protection, as defined in section 9.4.2.

HEADER?RATE��HEADER?CRC� These values have the same semantics with class_rate and class_crc respectively, while
these error protection is utilized for the protection of header part.

rs_ep_frame(): Reed-Solomon Error Protected Frame that is applied Reed-Solomon code.

RS?PARITY?BITS�� The Reed-Solomon parity bits for ep_frame(). See section 9.4.7.

ep_frame(): Error Protected Frame.

ep_header(): EP frame header information.

ep_encoded_classes(): The EP encoded audio information.

INTERLEAVE?FRAME?MODE�� The information bits after interleaving with interleaving mode 1. See section 9.4.1 and section
9.4.6.

INTERLEAVE?FRAME?MODE�� The information bits after interleaving with interleaving mode 2. See section 9.4.1 and section
9.4.6.

STUFFING?BITS: The stuffing bits for the EP frame octet alignment. The number of bits Nstuff is signaled in class_attrib(),
and should be in the range of 0..7.

CHOICE?OF?PRED: The choice or predefined set. See section9.4.2.

CHOICE?OF?PRED?PARITY: The parity bits for choice_of_pred. See section 9.4.2.

CLASS?ATTRIB?PARITY: The parity bits for class_attrib(). See section9.4.2

class_attrib(): attribution information for each CLASS

130

CLASS?BIT?COUNT: the number of information bits included in the class. This field only exists in case the
length_escape in out-of-band information is 1 (escape). The number of bits of this parameter Nbitcount is also signaled in
the out-of-band information.

CLASS?CODE?RATE: the coding rate for the audio data belonging to the class, as defined in the table below. This field
only exists in case the rate_escape in out-of-band information is 1 (escape).

Codeword 000 001 010 011 100 101 110 111

Puncture

Rate

8/8 8/11 8/12 8/14 8/16 8/20 8/24 8/32

Puncture

Pattern

FF, 00

00, 00

FF, A8

00, 00

FF, AA

00, 00

FF, EE

00, 00

FF, FF

00, 00

FF, FF

AA, 00

FF, FF

FF, 00

FF, FF

FF, FF

CLASS?CRC?COUNT: the number of CRC bits for the audio data belonging to the class, as defined in the table below.
This field only exists in case the crclen_escape in out-of-band information is 1 (escape).

Codeword 000 001 010 011 100 101 110 111

CRC bits 0 6 8 10 12 14 16 32

NUM?STUFFING?BITS: the number of stuffing bits for the EP frame octet alignment. . This field only exists in case the
bit_stuffing in out-of-band information is 1.

EP?ENCODED?CLASS;I=: CRC/SRCPC encoded audio data of i-th class.

9.4� Tool description

9.4.1� Out of band information

In this section, the content of out-of band information is described. In the real transmission environment, these parameters
should be sent during the channel configuration, using such as ObjectDescriptor.

For the class length, the length of the last class can be defined as “until the end”, which means this class lasts until the
end of this frame. In the MPEG-4 systems, the systems layer guarantees the audio frame boundary by mapping one audio
frame to one Access Unit. Therefore, the length of “until the end” class can be calculated from the length of other classes
and the total EP-encoded audio frame length.

This implies the following two aspects, which should be carefully considered while generating the out-of band information:

1. The “until the end” definition is only allowed for the last class of each pre-defined set.

2. If the length of the last class is fixed, this value should be set in the pre-definition file, and should not use the “until the
end” definition. If the decoder knows this fixed value, the decoder can find the violation of the frame length. This may
occur when the error protected audio frame is partially dropped at the de-multiplexing, or when the choice of the pre-
defined set in the error-protected audio frame is corrupted due to channel error, and finding these violations will
enhance the error resiliency.

The text file format and examples of this information can be found in the informative part.

131

9.4.2� In band information

The EP frame information, which is not included in the out-of-band information, is the in-band information. The parameters
belonging to this information are transmitted as an EP frame header. The parameters are:

• The choice of pre-defined set

• The number of stuffing bits for byte alignment

• The class information which is not included in the out-of-band information

The EP decoder cannot decode the audio frame information without these parameters, and thus they have to be error
protected stronger than or equal to the other parts. On this error protection, the choice of pre-defined set has to be treated
differently from the other parts. This is because the length of the class information can be changed according to which
pre-defined set is chosen. For this reason, this parameter is FEC encoded independently from the other parts. At decoder
side, the choice of pre-defined set is decoded first, and then the length of the remaining header part is calculated with this
information, and decodes that.

The FEC applied for these parts are as follows:

1) Basic set of FEC codes:

Number of bit to be protected FEC code total number of bits

1-2 majority (repeat 3 times) 3-6

3-4 BCH(7,4) 6-7

5-7 BCH(15,7) 13-15

8-12 Golay(23,12) 19-23

13-16 BCH(31,16) 28-31

17- RCPC 8/16 + 4-bit CRC 50 -

2) Extended Forward Error Correction

The header is protected in the same way as the class information. The SRCPC code rate and the number of CRC bits are
signaled. The encoding and decoding method for this is the same as described below within the CRC/SRCPC description.

The generation polynomials for each FEC is as follows:

BCH(7,4): X��X��

BCH(15,7): X��X��X��X���

Golay(23,12): X���X��X��X��X��X��X��

BCH(31,16): X���X���X���X��X��X��X��X��X��X��

With these polynomials, the FEC (N��K) for L-bit information encoding is made as follows:

132

Calculate the polynomial R(x) that satisfies

M(x) xN
L = Q(x)G(x) + R(x)

M(x): Information bits. Highest order corresponds to the first bit to be transmitted

G(x): The generation polynomial from the above definition

This polynomial R(x) represents parity to CHOICE?OF?PRED or class_attrib(), and set to CHOICE?OF?PRED?PARITY or
CLASS?ATTRIB?PARITY respectively. The highest order corresponds to the first bit. The decoder can perform error correction
using these parity bits , while it is optional operation.

9.4.3� Concatenation functionality

EP tool has a functionality to concatenate several source coder frames to build up a new frame for the EP tool. In this
concatenation, the groups of bits belonging to the same class in the different source coder frames are concatenated in
adjacent, class by class basis. The concatenated groups belonging to the same class is either treated as a single new one
class or independent class in the same manner as before the concatenation.

The number of frames to be concatenated is signaled as number_of_concatenated_frame in
ErrorProtection_SpecificConfig(), and the choice whether the concatenated groups belonging to the same class is treated
as single new one class or independent class is signaled by concatenate_flag[i][j] (1 indicate ‘single new one class’, and
0 indicates ‘independent class’). This process is illustrated in Figure 9.4.1.

All the frames to be concatenated shall use the same predefined set, and all the fields as CRC bits or FEC rates in that
predefined set shall have constant value (not escape). These fields in predefined set indicates the class configuration of
the input frames.

Figure9.4.1 Concatenation Procedure

9.4.4� Cyclic Redundancy Code

The CRC provides error detection capability. The information bits of each class is CRC encoded as a first
process. In this tool, the following set of the CRC is defined:

1-bit CRC #2#�: X��

2-bit CRC #2#�: X��X��

Class M/N*ClassClass

Treat as independentTreat as single

Input frameInput frame

Concatenate class by

Frame after

Input frame

*Class M/N*ClassClass Class M/N*ClassClass

OClass

Class*Class

OclassOClass

Class Class M/N*ClassClass

Oclas*

*OClass: Output class to be proceed for CRC/FEC

OClas*OClasOClas

Treat as independent

Class

Class Class * Class

133

3-bit CRC #2#�: X��X��

4-bit CRC #2#�: X��X��X���

5-bit CRC #2#�: X��X��X��X��

6-bit CRC #2#��: X��X��X��X��X��

7-bit CRC #2#��: X��X��X���

8-bit CRC #2#� : X��X��X��

9-bit CRC #2#��: X��X��X��X��X��

10-bit CRC #2#���: X���X��X��X��X��

11-bit CRC #2#�� : X���X���X��X��X��

12-bit CRC #2#�� : X���X���X��X��X��

13-bit CRC #2#�� : X���X���X��X��X��X��X���

14-bit CRC #2#�� : X���X���X���X��X���

15-bit CRC #2#�� : X���X���X���X���X��X��X���

16-bit CRC #2#�� : X���X���X���

24-bit CRC #2#�� : X���X���X��X��X��

32-bit CRC #2#�� : X���X���X���X���X���X���X���X���X��X��X��X��X��X��

With these polynomials, the CRC encoding is made as follows:

Calculate the polynomial 2�X	 that satisfies

-�X	XK���1�X	'�X	���2�X	

-�X	: Information bits. Highest order corresponds to the first bit to be transmitted

G(x): The generation polynomial from the above definition

K: The number of CRC bits.

With this polynomial 2�X	��the CRC encoded bits 7�X	 is represented as:

 7�X	�� -�X	XK���2�X	

Note that the value k should be chosen so that the number of CRC encoded bits don’t exceeds 2k-1.

Using these CRC bits, the decoder should perform error detection. When an error is detected through CRC, error
concealment may be applied to reduce the quality degradation caused by the error. The error concealment method
depends on MPEG-4 audio algorithms. See the informal annex (example of error concealment).

9.4.5� Systematic Rate-Compatible Punctured Convolutional (SRCPC) codes

Following to the CRC encoding, FEC encoding is made with the SRCPC codes. This section describes the SRCPC
encoding process.

134

The channel encoder is based on a systematic recursive convolutional (SRC) encoder with rate R=1/4. The CRC encoded
classes are concatenated, and input into this encoder. Then, with the puncturing procedure described in the section later,
we obtain a Rate Compatible Punctured Convolutional (RCPC) code whose code rate varies for each class according to
the error sensitivity.

9.4.5.1� SRC code generation

The SRC code is generated from a rational generator matrix by using a feedback loop. A shift register realization of the
encoder is shown in Figure 9.4.1.

mt
1=ut-1⊕dt-1 mt

2=ut-2⊕dt-2 mt
3=ut-3⊕dt-3 mt

4=ut-4⊕dt-4⊕

⊕
⊕ ⊕

⊕
⊕

⊕

⊕⊕

⊕ ⊕
vt

(1)

vt
(2)

vt
(3)

vt
(4)

ut

dt

Figure 9.4. 1 Shift Register Realization for Systematic Recursive Convolutional Encoder

To obtain the output vectors VT at each time instant t, one has to know the content of the shift registers MT�, MT�, MT�, MT�

(corresponds to the state) and the input bit UT�at time T.

We obtain the output VT�
��	, VT�

��	 and VT�
��	

VT�
��	 ��MT

��⊕�MT
��⊕���UT�⊕�DT�	

VT�
��	 ��MT

��⊕�MT
��⊕�MT

��⊕���UT�⊕�DT�	

VT�
��	 ��MT

��⊕�MT
��⊕�MT

��⊕���UT�⊕�DT�	

with

DT���MT
��⊕�MT

��⊕�MT
���MT

����UT
��⊕�DT
���MT
����UT
��⊕�DT
���MT

����UT
��⊕�DT
���MT
����UT
��⊕�DT
�

Finally we obtain for the output vector VT����VT
��	��VT

��	��VT
��	��VT

��		�at time T depending on the input bit UT and the current state
MT����MT

���MT
���MT

���MT
�	:

6T�
��	 ��UT

6T�
��	 ��MT

��⊕�MT
��⊕���UT�⊕�DT�	���MT

��⊕�MT
��⊕�MT

��⊕
UT

6T�
��	 ��MT

��⊕�MT
��⊕�MT

��⊕���UT�⊕�DT�	���MT
��⊕�MT

��⊕
UT

6T�
��	���MT

��⊕�MT
��⊕�MT

��⊕���UT�⊕�DT�	���MT
��⊕�MT

��⊕
UT

with M1 = (m1
1, m1

2, m1
3, m1

4) = (0, 0, 0, 0) = �

The initial state is always �, i.e. each memory cell contains a 0 before the input of the first information bit ut.

135

�������� 0UNCTURING�OF�32#�FOR�32#0#�CODE

Puncturing of the output of the SRC encoder allows different rates for transmission. The puncturing tables are listed in
Table 9.4.1.

Table 9.4.19.4.1 Puncturing tables (all values in hexadecimal representation)

Rate r 8/8 8/9 8/10 8/11 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20

Pr (0) FF FF FF FF FF FF FF FF FF FF FF FF FF

Pr (1) 00 80 88 A8 AA EA EE FE FF FF FF FF FF

Pr (2) 00 00 00 00 00 00 00 00 00 80 88 A8 AA

Pr (3) 00 00 00 00 00 00 00 00 00 00 00 00 00

Rate r 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 8/29 8/30 8/31 8/32

Pr (0) FF FF FF FF FF FF FF FF FF FF FF FF

Pr (1) FF FF FF FF FF FF FF FF FF FF FF FF

Pr (2) EA EE FE FF FF FF FF FF FF FF FF FF

Pr (3) 00 00 00 00 80 88 A8 AA EA EE FE FF

The puncturing is made with the period of 8, and each bit of Pr(i) indicates the corresponding vt(i) from the SRC
encoder is punctured (not transmitted) or not (transmitted). Each bit of Pr(i) is used from MSB to LSB, and 0/1 indicates
not-punctured/punctured respectively. The code rate is a property of the class, thus the choice of the table is made
according which class the current bit belongs to. After this decision which bits from vt(i) is transmitted, they are output in
the order from vt(0) to vt(3).

9.4.5.3� Decoding process of SRCPC code

At the decoder, the error correction should be performed using this SRCPC code, while it is the optional operation and the
decoder may extract the original information by just ignoring parity bits.

Decoding of SRCPC can be achieved using Viterbi algorithm for the punctured convolutional coding.

9.4.5.4� Recursive interleaving

The FEC codes are designed mainly to correct the random errors. However, the realistic error prone channel as wireless
mobile channel has a burst error characteristic and the FEC capability is not so high as expected in such environment.
Interleaving solve this problem by randomizing the bit-errors across the entire frame.

In this EP tool, the modified interleaving is used due to two reasons. One is that the frame is FEC coded with several
different FEC codes, and thus the one interleaving for entire frame cannot be optimal for all the FEC codes. And the other
is the utilization of other error resilient tools. The subjective of these tools are to use the non-corrupted part of the frame
for decoding as much as possible even in case the frame contains bit errors. This is a kind of localization of erroneous
part, and randomization of the bit-errors obstructs the effect of these tools.

136

The interleaving is applied in multi-stage manner. Figure 9.4.2 shows the interleaving method

Protected bits

Non-protected bits

W

Figure 9.4. 2 One stage of interleaving

In the multistage interleaving, the output of this one stage of interleaving is treated as a non-protected part in the next
stage. Figure 9.4.3 shows the example of 2 stage interleaving.

Figure 9.4. 3 Example of multi-stage interleaving

By choosing the width 7 of the interleave-matrix to be the same as the FEC code length (or the value of 24 in case
SRCPC codes), the interleaving size can be optimized for all the FEC codes.

In actual case, the total number of bits for the interleaving may not allow to use such rectangular. In such case, the matrix
as shown in Figure 9.4.4 is used.

1-st stage

3-bit Protected

63-bit non-protected ..

9-bit Protected

2-nd stage on Channel

137

7

Figure 9.4. 4 Interleave matrix in non-rectangular case

9.4.5.5� Definition of recursive interleaver

Two information streams are input to this interleaver, 8I and 9I.

8I, 0<=I<LX

9J, 0<=J<LY�

where LX and LY is the number of bits for each input streams 8I and 9J, respectively. 8I is set to the interleaving matrix from
the top left to the bottom right, into the horizontal direction. Then 9I is set into the rest place in vertical direction.

With the width of interleaver 7, the size of interleaving matrix is shown as Figure 9.4.5. Where,

$ = (LX + LY) / 7

D = LX + LY - $ * 7

where ‘/’ indicates division by truncation.

$

D

0 1 2 ……..
0
1
2

N

M

Figure 9.4. 5 The size of Interleaving Matrix

The output bit stream :K (0 < K <= LX+LY) is read from this matrix from top left to bottom right, column by column in
horizontal direction. Thus the bit placed M-th column, N-th row (m and n starts from 0) corresponds to :K where:

K = m * $ + min(M, D) + N

In the matrix, 8I is set to

138

M = I mod 7, N = I / 7�

Thus Zk which is set by the Xi becomes:

:K = 8I, where K = (I mod 7) * $ + min(I mod 7, D) + I /7

The bits which is set with Xi in the interleaving matrix are shown as Figure 9.4.6 where:

$’ = LX / 7

D’ = LX - $’ * 7

$’

D’

Figure 9.4. 6 The bits which is set with Xi in the interleaving matrix

Thus, in the m-th row, Yj is set from the N-th tow where n = $’ + (M < D’ ? 1 : 0) to the bottom. Thus Zk set
by Yj is represented as follows:

Set j to 0

for m=0 to D-1{

 for k = m * D + min(m, d) + D’ + (m < d’ ? 1 : 0)

 to (m+1) * D + min(m+1, d)-1 {

 :K = 9J

 J�++

 }

}

9.4.5.6� Modes of interleaving

Two modes of interleaving, mode 1 and mode 2 are defined in the following sections.

9.4.5.6.1� Interleaving operation in mode 1

Multi-stage interleaving is processed for EP?ENCODED?CLASS�from the last class to first class, and then class attribution
part of ep_header() (which is class_attrib() + CLASS?ATTRIB?PARITY), and the predefined part of ep_header() (which is
CHOICE?OF?PRED + CHOICE?OF?PRED?PARITY)� as illustrated in Figure 9.4.7.

139

Figure 9.4. 7 Interleaving process of mode1 specification

9.4.5.6.2� Interleaving operation in mode 2

In mode 2, a flag indicates whether the class is processed with interleaver, and how it is interleaved. This flag
interleave_switch is signaled within the out-of-band information. The value 0 indicates the class is not processed with the
interleaver. The value 1 indicates the class is interleaved with the recursive interleaver, and the length of the class is set to
the width of the interleaver. The value 2 indicates the class is interleaved with the recursive interleaver, and the width is
set to be equal to 24. The interleaving operation for the ep_header is same as mode 1.

The interleaving process to obtain INTERLEAVED?FRAME?MODE� is as follows:

Clear buffer BUF_NO /* Buffer for non-interleaved part. */

Clear buffer BUF_Y /* Buffer for Y input in the next stage */

For i = N to 1{

if(interleave_switch[i] == 0){

concatenate EP?ENCODED?CLASS;I= at the end of BUF_NO

} else {

if (interleave_switch == 1){

set the size of the interleave window to be the length of EP?ENCODED?CLASS;I=

}else if (interleave_switch == 2){

set the size of the interleave window to be 24

]

input EP?ENCODED?CLASS;I=�into the recursive interleaver as X input

input BUF_Y into the recursive interleaver as Y input

140

set the output of the interleaver into BUF_Y

}

}

concatenate BUF_NO at the end of BUF_Y

input class_attrib() followed by CLASS?ATTRIB?PARITY�into the recursive interleaver as X input

input BUF_Y into the recursive interleaver as Y input

set the output of the interleaver into BUF_Y

input CHOICE?OF?PRED followed by CHOICE?OF?PRED?PARITY into the recursive interleaver as X input

input BUF_Y into the recursive interleaver as Y input

set the output of the interleaver into BUF_Y

set�BUF_Y into�INTERLEAVED?FRAME?MODE�

Where N is the number of classes

Header *2

Class 1

Class 2

Class 3

Concatenate

Interleaver

Interleaver

Y

X

Output

Interleave Switch ? (0: No interleaving, 1:Inter without Intra, 2: Inter with Intra)

0

2

0

Class 41 Interleaver

Y

X

NULL

Concatenate

W=24

W=len(class 4)

W=codelen(Header FEC)Y

X

Header *1

Interleaver
W=codelen(Header FEC)Y

X

*1 First part of Header: class_attrib() followed by class_attrib_parity
*2 Second part of Header:choice_of_pred followed by choice_of_pred_parity

Figure 9.4. 8 Interleave process with class-wise control of interleaving

141

The width of interleave matrix is chosen according to the FEC used. In case Block Codes are used, the length of the
codeword is used as this width. In case the RCPC code is used, 28-bit is used as this width.

9.4.6� Shortened Reed-Solomon Codes

Shortened RS codes RS(255-L, 255-2T-L) defined over GF(28) is used to protect EP encoded frame. Here, T is the number
of correctable errors in one RS codeword. L is for the shortening.

First, the EP encoded frame is divided into N parts, so that its length is less than or equal to (255-2T) octets. This division if
made from the beginning of the frame so that the length of the sub-frame becomes (255-2 T) octets, except the last part.
Then for each of N sub-frames, the parity digits are calculated. For the transmission, these N parity digits are appended at
the end of the EP frame. This process is illustrated in figure 9.4.9.

 EP Frame

8(255-2K) 8(255-2K) 8(255-2K)

RS Parity
(1)

Frame to be transmitted

 EP Frame

RS Parity
(2)

RS Parity
(3)

RS Parity
(1)

RS Parity
(2)

RS Parity
(3)

Figure 9.4. 9 RS Encoding of EP Frame

The correction capability of SRS code T is transmitted within the out-of-band information as RS?FEC?CAPABILITY. This value
can be selected as an arbitrary integer value satisfying 0≤2T≤254. The SRS code defined in the Galois Field GS(28) is
generated from a generator polynomial G(X) = (X-α)(X-α�)⋅⋅⋅(X-α�T), where α� denotes a root of the primitive polynomial
M(X)=X8+X4+X3+X2+1. The binary representative of αI is shown in the Table 9.4.2 below, where the MSB of the octet is
transmitted first:

The decoder should perform error correction using these parity bytes, while this is an optional operation and the decoder
may ignore these parity bytes added.

Table 9.4.2 Binary representation for α I (� ���≤ ≤I) over GF(28)

aI Binary rep. aI binary rep. aI binary rep. aI binary rep.

0 00000000 a63 10100001 a127 11001100 a191 01000001

a0 00000001 a64 01011111 a128 10000101 a192 10000010

a1 00000010 a65 10111110 a129 00010111 a193 00011001

a2 00000100 a66 01100001 a130 00101110 a194 00110010

a3 00001000 a67 11000010 a131 01011100 a195 01100100

a4 00010000 a68 10011001 a132 10111000 a196 11001000

a5 00100000 a69 00101111 a133 01101101 a197 10001101

a6 01000000 a70 01011110 a134 11011010 a198 00000111

a7 10000000 a71 10111100 a135 10101001 a199 00001110

142

a8 00011101 a72 01100101 a136 01001111 a200 00011100

a9 00111010 a73 11001010 a137 10011110 a201 00111000

a10 01110100 a74 10001001 a138 00100001 a202 01110000

a11 11101000 a75 00001111 a139 01000010 a203 11100000

a12 11001101 a76 00011110 a140 10000100 a204 11011101

a13 10000111 a77 00111100 a141 00010101 a205 10100111

a14 00010011 a78 01111000 a142 00101010 a206 01010011

a15 00100110 a79 11110000 a143 01010100 a207 10100110

a16 01001100 a80 11111101 a144 10101000 a208 01010001

a17 10011000 a81 11100111 a145 01001101 a209 10100010

a18 00101101 a82 11010011 a146 10011010 a210 01011001

a19 01011010 a83 10111011 a147 00101001 a211 10110010

a20 10110100 a84 01101011 a148 01010010 a212 01111001

a21 01110101 a85 11010110 a149 10100100 a213 11110010

a22 11101010 a86 10110001 a150 01010101 a214 11111001

a23 11001001 a87 01111111 a151 10101010 a215 11101111

a24 10001111 a88 11111110 a152 01001001 a216 11000011

a25 00000011 a89 11100001 a153 10010010 a217 10011011

a26 00000110 a90 11011111 a154 00111001 a218 00101011

a27 00001100 a91 10100011 a155 01110010 a219 01010110

a28 00011000 a92 01011011 a156 11100100 a220 10101100

a29 00110000 a93 10110110 a157 11010101 a221 01000101

a30 01100000 a94 01110001 a158 10110111 a222 10001010

a31 11000000 a95 11100010 a159 01110011 a223 00001001

a32 10011101 a96 11011001 a160 11100110 a224 00010010

a33 00100111 a97 10101111 a161 11010001 a225 00100100

a34 01001110 a98 01000011 a162 10111111 a226 01001000

a35 10011100 a99 10000110 a163 01100011 a227 10010000

a36 00100101 a100 00010001 a164 11000110 a228 00111101

a37 01001010 a101 00100010 a165 10010001 a229 01111010

a38 10010100 a102 01000100 a166 00111111 a230 11110100

143

a39 00110101 a103 10001000 a167 01111110 a231 11110101

a40 01101010 a104 00001101 a168 11111100 a232 11110111

a41 11010100 a105 00011010 a169 11100101 a233 11110011

a42 10110101 a106 00110100 a170 11010111 a234 11111011

a43 01110111 a107 01101000 a171 10110011 a235 11101011

a44 11101110 a108 11010000 a172 01111011 a236 11001011

a45 11000001 a109 10111101 a173 11110110 a237 10001011

a46 10011111 a110 01100111 a174 11110001 a238 00001011

a47 00100011 a111 11001110 a175 11111111 a239 00010110

a48 01000110 a112 10000001 a176 11100011 a240 00101100

a49 10001100 a113 00011111 a177 11011011 a241 01011000

a50 00000101 a114 00111110 a178 10101011 a242 10110000

a51 00001010 a115 01111100 a179 01001011 a243 01111101

a52 00010100 a116 11111000 a180 10010110 a244 11111010

a53 00101000 a117 11101101 a181 00110001 a245 11101001

a54 01010000 a118 11000111 a182 01100010 a246 11001111

a55 10100000 a119 10010011 a183 11000100 a247 10000011

a56 01011101 a120 00111011 a184 10010101 a248 00011011

a57 10111010 a121 01110110 a185 00110111 a249 00110110

a58 01101001 a122 11101100 a186 01101110 a250 01101100

a59 11010010 a123 11000101 a187 11011100 a251 11011000

a60 10111001 a124 10010111 a188 10100101 a252 10101101

a61 01101111 a125 00110011 a189 01010111 a253 01000111

a62 11011110 a126 01100110 a190 10101110 a254 10001110

Before the SRS encoding, the EP frame is divided into sub-frames so that the length is less than or equal to 255-2T. The
length of sub-frames are calculated with as follows:

,: The length of EP frame in octet.
.: The number of sub-frames
LI: The length of i-th sub-frame
. = minimum integer small than (, / (255-2T))
LI = 255-2T, for I<.
 , mod (255-2T), for I�= .

For each of these sub-frames, the SRC parity digits with length of 2T�octets are calculated using G(X) as follows:

U(X): polynomial representative of a sub-frame. Lowest order corresponds to the first octet.
P(X): polynomial representative of the parity digits. Lowest order corresponds to the first octet.

144

P(X) = X�T ⋅ U(X) mod G(X)

10� Error resilience bitstream reordering

10.1� Overview of the tools

Error resilient bitstream reordering allows the effective use of advanced channel coding techniques like unequal error
protection (UEP),.Error resilient bitstream reordering allows for the effective use of advanced channel coding techniques
like unequal error protection (UEP), that can be perfectly adapted to the needs of the different coding tools. The basic idea
is to rearrange the audio frame content depending on its error sensitivity in one or more instances belonging to different
error sensitivity categories (ESC). This re-arangement works either data element-wise or even bit-wise. An error resilient
bitstream frame is build by concatenating these instances. To describe the error sensitivity of bitstream elements, Error
sensitivity categories (ESC) are introduced. ESC0 denotes the class with the highest error sensitivity, whereas ESC4
denotes the class with the least error sensitivity.

Audio
Encoder

Bitstream
formatter

Channel
Coding

Channel

Channel
Decoding

Bitstream
formatter

Audio
Decoder

Figure 10.1 - basic principle of error resilient bitstream reordering

The basic principle is depicted in Figure 10.1. A bitstream, as defined in Version 1 is reordered according to the error
sensitivity of single bitstream elements or even single bits. This new arranged bitstream is channel coded, transmitted and
channel decoded. Prior decoding, the bitstream is rearranged to its original order. Instead of performing the reordering in
the described way, the reordered syntax, that is the bitstream order prior the bitstream formatter at the deocder site, is
defined in this amendment

In the subsequent sections, a detailed description of error resilient bitstream reordering for these tools can be found.

10.2� CELP

In order to describe the bit error sensitivity of bitstream elements, error sensitivity categories (ESC) are introduced. To
describe single bits of elements, the following notation is used.

gain, x-y

Denotes bit x to bit y of element gain, whereby x is transmitted first. The LSB is bit zero and the MSB of an element that
consist of N bit is N-1. The MSB is always the first bit in the bitstream.

The following syntax is a replacement for CelpBaseFrame as defined in 14494-3 section 3. The syntax for enhancement
layer for bitrate and bandwidth scalability is not affected.

145

10.2.1� Syntax

10.2.1.1� Error resilient frame syntax

Table 10.2.1 - Syntax of ER_CelpBaseFrame ()

Syntax No. of bits Mnemonic
ER_CelpBaseFrame()
{

if (ExcitationMode==MPE) {
if (SampleRateMode == 8kHz) {

MPE_NarrowBand_ESC0()
MPE_NarrowBand_ESC1()
MPE_NarrowBand_ESC2()
MPE_NarrowBand_ESC3()
MPE_NarrowBand_ESC4()

}
if (SampleRateMode == 16kHz) {

MPE_WideBand_ESC0()
MPE_WideBand_ESC1()
MPE_WideBand_ESC2()
MPE_WideBand_ESC3()
MPE_WideBand_ESC4()

}
}

if ((ExcitationMode==RPE) && (SampleRateMode==16kHz)) {
RPE_WideBand_ESC0()
RPE_WideBand_ESC1()
RPE_WideBand_ESC2()
RPE_WideBand_ESC3()
RPE_WideBand_ESC4()

}
}

10.2.1.2� MPE narrowband syntax

Table 10.2.2 - Syntax of MPE_NarrowBand_ESC0()

Syntax No. of bits Mnemonic
MPE_NarrowBand_ESC0()
{

if (FineRateControl == ON) {
Interpolation_flag 1 uimsbf
LPC_Present 1 uimsbf

}
rms_index, 5-4 2 uimsbf
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 7 1 uimsbf
}

}

Table 10.2.3 - Syntax of MPE_NarrowBand_ESC1()

Syntax No. of bits Mnemonic
MPE_NarrowBand_ESC1()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

146

lpc_indices [0], 1-0 2 uimsbf
lpc_indices [1], 0 1 uimsbf

}
} else {

lpc_indices [0], 1-0 2 uimsbf
lpc_indices [1], 0 1 uimsbf

}
signal_mode 2 uimsbf
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 6-5 2 uimsbf
}

}

Table 10.2.4 - Syntax of MPE_NarrowBand_ESC2()

Syntax No. of bits Mnemonic
MPE_NarrowBand_ESC2()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 0 1 uimsbf
lpc_indices [4] 1 uimsbf

}
} else {

lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 0 1 uimsbf
lpc_indices [4] 1 uimsbf

}
rms_index, 3 1 uimsbf
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 4-3 2 uimsbf
gain_index[subframe], 1-0 2 uimsbf

}
}

Table 10.2.5 - Syntax of MPE_NarrowBand_ESC3()

Syntax No. of bits Mnemonic
MPE_NarrowBand_ESC3()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [0], 3-2 2 uimsbf
lpc_indices [1], 2-1 2 uimsbf
lpc_indices [2], 5-1 5 uimsbf

}
} else {

lpc_indices [0], 3-2 2 uimsbf
lpc_indices [1], 2-1 2 uimsbf
lpc_indices [2], 5-1 5 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 2-0 3 uimsbf
gain_index[subframe], 2 1 uimsbf

}
}

147

Table 10.2.6 - Syntax of MPE_NarrowBand_ESC4()

Syntax No. of bits Mnemonic
MPE_NarrowBand_ESC4()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [1], 3 1 uimsbf
lpc_indices [3] 6 uimsbf

}
} else {

lpc_indices [1], 3 1 uimsbf
lpc_indices [3] 6 uimsbf

}
rms_index, 2-0 3 uimsbf
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_positions[subframe] 13 ... 32 uimsbf
shape_signs[subframe] 3 ... 12 uimsbf
gain_index[subframe], 6-3 4 uimsbf

}
}

10.2.1.3� MPE wideband syntax

Table 10.2.7 - Syntax of MPE_WideBand_ESC0()

Syntax No. of bits Mnemonic
MPE_WideBand_ESC0()
{

if (FineRateControl == ON) {
Interpolation_flag 1 uimsbf
LPC_Present 1 uimsbf
if (LPC_Present == YES) {

lpc_indices [0] 5 uimsbf
lpc_indices [1], 1-0 2 uimsbf
lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 4-0 5 uimsbf
lpc_indices [4] 1 uimsbf
lpc_indices [5], 0 1 uimsbf

}
} else {

lpc_indices [0] 5 uimsbf
lpc_indices [1], 1-0 2 uimsbf
lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 4-0 5 uimsbf
lpc_indices [4] 1 uimsbf
lpc_indices [5], 0 1 uimsbf

}
rms_index, 4-5 2 uimsbf

}

Table 10.2.8 - Syntax of MPE_WideBand_ESC1()

Syntax No. of bits Mnemonic
MPE_WideBand_ESC1()
{

148

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [1], 3-2 2 uimsbf
lpc_indices [2], 5 1 uimsbf
lpc_indices [5], 1 1 uimsbf
lpc_indices [6], 1-0 2 uimsbf

}
} else {

lpc_indices [1], 3-2 2 uimsbf
lpc_indices [2], 5 1 uimsbf
lpc_indices [5], 1 1 uimsbf
lpc_indices [6], 1-0 2 uimsbf

}
signal_mode 2 uimsbf
for (subframe=0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 8-6 3 uimsbf
}

}

Table 10.2.9 - Syntax of MPE_WideBand_ESC2()

Syntax No. of bits Mnemonic
MPE_WideBand_ESC2()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [1], 4 1 uimsbf
lpc_indices [3], 6 1 uimsbf
lpc_indices [3], 1 1 uimsbf
lpc_indices [5], 2 1 uimsbf
lpc_indices [6], 3 1 uimsbf
lpc_indices [7], 6 1 uimsbf
lpc_indices [7], 4 1 uimsbf
lpc_indices [7], 1-0 2 uimsbf
lpc_indices [9] 1 uimsbf

}
} else {

lpc_indices [1], 4 1 uimsbf
lpc_indices [3], 6 1 uimsbf
lpc_indices [3], 1 1 uimsbf
lpc_indices [5], 2 1 uimsbf
lpc_indices [6], 3 1 uimsbf
lpc_indices [7], 6 1 uimsbf
lpc_indices [7], 4 1 uimsbf
lpc_indices [7], 1-0 2 uimsbf
lpc_indices [9] 1 uimsbf

}
rms_index, 3 1 uimsbf
for (subframe=0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 5-4 2 uimsbf
gain_index[subframe], 1-0 2 uimsbf

}
}

Table 10.2.10 - Syntax of MPE_WideBand_ESC3()

Syntax No. of bits Mnemonic
MPE_WideBand_ESC3()
{

149

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [3], 4-2 3 uimsbf
lpc_indices [3], 0 1 uimsbf
lpc_indices [5], 3 1 uimsbf
lpc_indices [6], 2 1 uimsbf
lpc_indices [7], 5 1 uimsbf
lpc_indices [7], 3-2 2 uimsbf
lpc_indices [8], 4-1 4 uimsbf

}
} else {

lpc_indices [3], 4-2 3 uimsbf
lpc_indices [3], 0 1 uimsbf
lpc_indices [5], 3 1 uimsbf
lpc_indices [6], 2 1 uimsbf
lpc_indices [7], 5 1 uimsbf
lpc_indices [7], 3-2 2 uimsbf
lpc_indices [8], 4-1 4 uimsbf

}
for (subframe=0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 3-2 2 uimsbf
gain_index[subframe], 2 1 uimsbf

}
}

Table 10.2.11 - Syntax of MPE_WideBand_ESC4()

Syntax No. of bits Mnemonic
MPE_WideBand_ESC4()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [3], 5 1 uimsbf
lpc_indices [8], 0 1 uimsbf

}
} else {

lpc_indices [3], 5 1 uimsbf
lpc_indices [8], 0 1 uimsbf

}
rms_index, 2-0 3 uimsbf
for (subframe=0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 1-0 2 uimsbf
shape_positions[subframe] 14 ... 32 uimsbf
shape_signs[subframe] 3 ... 12 uimsbf
gain_index[subframe], 6-3 4 uimsbf

}
}

10.2.1.4� RPE wideband syntax

Table 10.2.12 - Syntax of RPE_WideBand_ESC0()

Syntax No. of bits Mnemonic
RPE_WideBand_ESC0()
{

if (FineRateControl == ON){
Interpolation_flag 1 uimsbf
LPC_Present 1 uimsbf
if (LPC_Present == YES) {

150

lpc_indices [0] 5 uimsbf
lpc_indices [1], 1-0 2 uimsbf
lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 4-0 5 uimsbf
lpc_indices [4] 1 uimsbf
lpc_indices [5], 0 1 uimsbf

}
} else {

lpc_indices [0] 5 uimsbf
lpc_indices [1], 1-0 2 uimsbf
lpc_indices [2], 6 1 uimsbf
lpc_indices [2], 4-0 5 uimsbf
lpc_indices [4] 1 uimsbf
lpc_indices [5], 0 1 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

gain_indices[0][subframe], 5-3 3 uimsbf
if (subframe == 0) {

gain_indices[1][subframe], 4-3 2 uimsbf
} else{

gain_indices[1][subframe], 2 1 uimsbf
}

}
}

Table 10.2.13 - Syntax of RPE_WideBand_ESC1()

Syntax No. of bits Mnemonic
RPE_WideBand_ESC1()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [1], 3-2 2 uimsbf
lpc_indices [2], 5 1 uimsbf
lpc_indices [5], 1 1 uimsbf
lpc_indices [6], 1-0 2 uimsbf

}
} else {

lpc_indices [1], 3-2 2 uimsbf
lpc_indices [2], 5 1 uimsbf
lpc_indices [5], 1 1 uimsbf
lpc_indices [6], 1-0 2 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 7-5 3 uimsbf
}

}

Table 10.2.14 - Syntax of RPE_WideBand_ESC2()

Syntax No. of bits Mnemonic
RPE_WideBand_ESC2()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [1], 4 1 uimsbf
lpc_indices [3], 6 1 uimsbf
lpc_indices [3], 1 1 uimsbf
lpc_indices [5], 2 1 uimsbf

151

lpc_indices [6], 3 1 uimsbf
lpc_indices [7], 6 1 uimsbf
lpc_indices [7], 4 1 uimsbf
lpc_indices [7], 1-0 2 uimsbf
lpc_indices [9] 1 uimsbf

}
} else {

lpc_indices [1], 4 1 uimsbf
lpc_indices [3], 6 1 uimsbf
lpc_indices [3], 1 1 uimsbf
lpc_indices [5], 2 1 uimsbf
lpc_indices [6], 3 1 uimsbf
lpc_indices [7], 6 1 uimsbf
lpc_indices [7], 4 1 uimsbf
lpc_indices [7], 1-0 2 uimsbf
lpc_indices [9] 1 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 4-3 2 uimsbf
gain_index[0][subframe], 2 1 uimsbf
if (subframe == 0) {

gain_indices[1][subframe], 2 1 uimsbf
} else{

gain_indices[1][subframe], 1 1 uimsbf
}

}
}

Table 10.2.15 - Syntax of RPE_WideBand_ESC3()

Syntax No. of bits Mnemonic
RPE_WideBand_ESC3()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {
lpc_indices [3], 4-2 3 uimsbf
lpc_indices [3], 0 1 uimsbf
lpc_indices [5], 3 1 uimsbf
lpc_indices [6], 2 1 uimsbf
lpc_indices [7], 5 1 uimsbf
lpc_indices [7], 3-2 2 uimsbf
lpc_indices [8], 4-1 4 uimsbf
}

} else {
lpc_indices [3], 4-2 3 uimsbf
lpc_indices [3], 0 1 uimsbf
lpc_indices [5], 3 1 uimsbf
lpc_indices [6], 2 1 uimsbf
lpc_indices [7], 5 1 uimsbf
lpc_indices [7], 3-2 2 uimsbf
lpc_indices [8], 4-1 4 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 2-1 2 uimsbf
}

}

152

Table 10.2.16 - Syntax of RPE_WideBand_ESC4()

Syntax No. of bits Mnemonic
RPE_WideBand_ESC4()
{

if (FineRateControl == ON) {
if (LPC_Present == YES) {

lpc_indices [3], 5 1 uimsbf
lpc_indices [8], 0 1 uimsbf

}
} else {

lpc_indices [3], 5 1 uimsbf
lpc_indices [8], 0 1 uimsbf

}
for (subframe = 0; subframe < nrof_subframes; subframe++) {

shape_delay[subframe], 0 1 uimsbf
shape_index[subframe] 11, 12 uimsbf
gain_index[0][subframe], 1-0 2 uimsbf
if (subframe == 0) {

gain_indices[1][subframe], 1-0 2 uimsbf
} else{

gain_indices[1][subframe], 0 1 uimsbf
}

}
}

10.2.2� General information

See ISO/IEC 14496-3 Subpart 3 speech coding - CELP

10.2.3� Tool description

See ISO/IEC 14496-3 Subpart 3 speech coding - CELP

10.3� HVXC

10.3.1� Syntax

When the HVXC tool is used with an error protection tool, such as an MPEG-4 EP Tool, the bit order arranged in
accordance with the error sensitivty shown below should be used. The HVXC with the error resilient syntax shown below
and the 4.0kbps variable bit rate mode described in clause 12 are called ER_HVXC. ErHVXCframe(), ErHVXCfixframe(),
ErHVXCvarframe(), ErHVXCCenhaframe(), ErHVXCenh_fixframe(), and ErHVXCenh_varframe() are used in ER HVXC.
Decoder configuration, ER_HvxcSpecificConfig() and Access Unit Payload of ER HVXC object are described in clause 12.

The same notation as in the CELP part is used to describe single bits of elements.

$EFINITION�OF�PARAMETERS

Definition of the parameters are the same as in 14494-3 section2 as shown below.

 parameters used for 2/4kbps

LSP1 LSP index 1 (5 bit)

153

LSP2 LSP index 2 (7 bit)
LSP3 LSP index 3 (5 bit)
LSP4 LSP index 4 (1 bit)
VUV voiced/unvoiced flag (2 bit)
Pitch pitch parameter (7 bit)
SE_shape1 spectrum index 1 (4 bit)
SE_shape2 spectrum index 2 (4 bit)
SE_gain spectrum gain index (5 bit)
VX_shape1[0] stochastic codebook index 0 (6 bit)
VX_shape1[1] stochastic codebook index 1 (6 bit)
VX_gain1[0] gain codebook index 0 (4 bit)
VX_gain1[1] gain codebook index 1 (4 bit)

parameters used only for 4kbps

LSP5 LSP index 5 (8 bit)
SE_shape3 4k spectrum index 3 (7 bit)
SE_shape4 4k spectrum index 4 (10 bit)
SE_shape5 4k spectrum index 5 (9 bit)
SE_shape6 4k spectrum index 6 (6 bit)
VX_shape2[0] 4k stochastic codebook index 0 (5 bit)
VX_shape2[1] 4k stochastic codebook index 1 (5 bit)
VX_shape2[2] 4k stochastic codebook index 2 (5 bit)
VX_shape2[3] 4k stochastic codebook index 3 (5 bit)
VX_gain2[0] 4k gain codebook index 0 (3 bit)
VX_gain2[1] 4k gain codebook index 1 (3 bit)
VX_gain2[2] 4k gain codebook index 2 (3 bit)
VX_gain2[3] 4k gain codebook index 3 (3 bit)

parameters used only for 4kbps variable rate mode

UpdateFlag a flag to indicate update noise
frame

(1 bit)

3YNTAX�OF�%R(68#FRAME�	

Syntax No. of bits Mnemonic
ErHVXCframe()
{

if (HVXCvarMode ==0) {
ErHVXCfixframe(HVXCrate)

}
else {

ErHVXCvarframe(HVXCrate)
}

}

3YNTAX�OF�%R(68#ENHAFRAME�	

Syntax No. of bits Mnemonic

154

ErHVXCenhaframe()
{

if (HVXCvarMode ==0) {
ErHVXCenh_fixframe()

}
else {

ErHVXCenh_varframe()
}

}

Syntax No. of bits Mnemonic
ErHVXCfixframe(rate)
{
 if (rate == 2000){
 2k_ESC0()
 If(VUV!=0){
 2kV_ESC1()
 2kV_ESC2()
 2kV_ESC3()
 2kV_ESC4()
 }
 Else{
 2kUV_ESC1()
 2kUV_ESC2()
 2kUV_ESC3()
 }
 }
 Else if (rate >= 3700){
 4k_ESC0()
 If(VUV!=0){
 4kV_ESC1()
 4kV_ESC2()
 4kV_ESC3()
 4kV_ESC4()
 }
 Else{
 4kUV_ESC1()
 4kUV_ESC2()
 }
 }
}

155

Syntax No. of bits Mnemonic
2k_ESC0()
{
 VUV , 1-0 2 uimsbf
}

2kbps Voiced Frame

Syntax No. of bits Mnemonic
2kV_ESC1()
{
 LSP4, 0 1 uimsbf
 SE_gain, 4-0 5 uimsbf
 LSP1, 4-0 5 uimsbf
 Pitch, 6-1 6 uimsbf
 LSP2, 6 1 uimsbf
}

Syntax No. of bits Mnemonic
2kV_ESC2()
{
 LSP3, 4 1 uimsbf
 LSP2, 5 1 uimsbf
}

Syntax No. of bits Mnemonic
2kV_ESC3()
{
 SE_shape1, 3-0 4 uimsbf
 SE_shape2, 3-0 4 uimsbf
}

Syntax No. of bits Mnemonic
2kV_ESC4()
{
 LSP2, 4-0 5 uimsbf
 LSP3, 3-0 4 uimsbf
 Pitch, 0 1 uimsbf
}

2kbps UnVoiced Frame

156

Syntax No. of bits Mnemonic
2kUV_ESC1()
{
 LSP4, 0 1 uimsbf
 VX_gain1[0], 3-0 4 uimsbf
 VX_gain1[1], 3-0 4 uimsbf
 LSP1, 4-0 5 uimsbf
 LSP2, 6 1 uimsbf
 LSP2, 5-3 3 uimsbf
}

Syntax No. of bits Mnemonic
2kUV_ESC2()
{
 LSP3, 4-3 2 uimsbf
}

Syntax No. of bits Mnemonic
2kUV_ESC3()
{
 LSP2, 2-0 3 uimsbf
 LSP3, 2-0 3 uimsbf
 VX_shape1[0], 5-0 6 uimsbf
 VX_shape1[1], 5-0 6 uimsbf
}

4kbps

Syntax No. of bits Mnemonic
4k_ESC0()
{
 VUV , 1-0 2 uimsbf
}

4kbps Voiced Frame

Syntax No. of bits Mnemonic
4kV_ESC1()
{
 LSP4, 0 1 uimsbf
 SE_gain, 4-0 5 uimsbf
 LSP1, 4-0 5 uimsbf
 Pitch, 6-1 6 uimsbf
 LSP2, 6-3 4 uimsbf
 SE_shape3, 6-2 5 uimsbf
 LSP3, 4 1 uimsbf

157

 LSP5, 7 1 uimsbf
 SE_shape4, 9 1 uimsbf
 SE_shape5, 8 1 uimsbf
 SE_shape6, 5 1 uimsbf
}

Syntax No. of bits Mnemonic
4kV_ESC2()
{
 SE_shape4, 8-0 9 uimsbf
 SE_shape5, 7-0 8 uimsbf
 SE_shape6, 4-0 5 uimsbf
}

Syntax No. of bits Mnemonic
4kV_ESC3()
{
 SE_shape1, 3-0 4 uimsbf
 SE_shape2, 3-0 4 uimsbf
}

Syntax No. of bits Mnemonic
4kV_ESC4()
{
 LSP2, 2-0 3 uimsbf
 LSP3, 3-0 4 uimsbf
 LSP5, 6-0 7 uimsbf
 Pitch, 0 1 uimsbf
 SE_shape3, 1-0 2 uimsbf
}

4kbps UnVoiced Frame

Syntax No. of bits Mnemonic
4kUV_ESC1()
{
 LSP4, 0 1 uimsbf
 VX_gain1[0], 3-0 4 uimsbf
 VX_gain1[1], 3-0 4 uimsbf
 LSP1, 4-0 5 uimsbf
 LSP2, 6-3 4 uimsbf
 LSP3, 4 1 uimsbf
 LSP5, 7 1 uimsbf
 VX_gain2[0], 2-0 3 uimsbf
 VX_gain2[1], 2-0 3 uimsbf
 VX_gain2[2], 2-0 3 uimsbf

158

 VX_gain2[3], 2-0 3 uimsbf
}

Syntax No. of bits Mnemonic
4kUV_ESC2()
{
 LSP2, 2-0 3 uimsbf
 LSP3, 3-0 4 uimsbf
 LSP5, 6-0 7 uimsbf
 VX_shape1[0], 5-0 6 uimsbf
 VX_shape1[1], 5-0 6 uimsbf
 VX_shape2[0], 4-0 5 uimsbf
 VX_shape2[1], 4-0 5 uimsbf
 VX_shape2[2], 4-0 5 uimsbf
 VX_shape2[3], 4-0 5 uimsbf
}

Bitstream syntax of the base layer for scalable mode is the same as that of ErHVXCfixframe(2000).
Bitstream syntax of enhancement layer, ErHVXCenhaFrame(), for scalable mode is shown below.

Enhancement layer

Syntax No. of bits Mnemonic
ErHVXCenh_fixframe()
{
 If(VUV!=0){
 EnhV_ESC1()
 EnhV_ESC2()
 EnhV_ESC3()
 Else{
 EnhUV_ESC1()
 EnhUV_ESC2()
 }
}

Enhancement layer of Voiced Frame

Syntax No. of bits Mnemonic
EnhV_ESC1()
{
 SE_shape3, 6-2 5 uimsbf
 LSP5, 7 1 uimsbf
 SE_shape4, 9 1 uimsbf
 SE_shape5, 8 1 uimsbf
 SE_shape6, 5 1 uimsbf
}

159

Syntax No. of bits Mnemonic
EnhV_ESC2()
{
 SE_shape4, 8-0 9 uimsbf
 SE_shape5, 7-0 8 uimsbf
 SE_shape6, 4-0 5 uimsbf
}

Syntax No. of bits Mnemonic
EnhV_ESC3()
{
 LSP5, 6-0 7 uimsbf
 SE_shape3, 1-0 2 uimsbf
}

Enhancement layer of UnVoiced Frame

Syntax No. of bits Mnemonic
EnhUV_ESC1()
{
 LSP5, 7 1 uimsbf
 VX_gain2[0], 2-0 3 uimsbf
 VX_gain2[1], 2-0 3 uimsbf
 VX_gain2[2], 2-0 3 uimsbf
 VX_gain2[3], 2-0 3 uimsbf
}

Syntax No. of bits Mnemonic
EnhUV_ESC2()
{
 LSP5, 6-0 7 uimsbf
 VX_shape2[0], 4-0 5 uimsbf
 VX_shape2[1], 4-0 5 uimsbf
 VX_shape2[2], 4-0 5 uimsbf
 VX_shape2[3], 4-0 5 uimsbf
}

Bitstream syntax of ErHVXCvarframe() is shown below.
Syntax No. of bits Mnemonic
ErHVXCvarframe(rate)
{

if (rate == 2000) {
If(var_ScalableFlag == 1) {

160

BaseVar_ESC0()
If(VUV==2 || VUV==3) {

BaseVarV_ESC1()
BaseVarV_ESC2()
BaseVarV_ESC3()
BaseVarV_ESC4()

} else if(VUV == 0) {
BaseVarUV_ESC1()
BaseVarUV_ESC2()
BaseVarUV_ESC3()

} else {
BaseVarBGN_ESC1()
If(UpdateFlag == 1) {

BaseVarBGN_ESC2()
BaseVarBGN_ESC3()

}
}

} else {
Var2k_ESC0()
if (VUV!=1) {

if (VUV!=0) {
Var2kV_ESC1()
Var2kV_ESC2()
Var2kV_ESC3()
Var2kV_ESC4()

} else {
Var2kUV_ESC1()
Var2kUV_ESC2()
Var2kUV_ESC3()

}
} else {

Var2kBGN_ESC1()
}

}
} else {

Var4k_ESC0()
if (VUV==2 || VUV==3) {

Var4kV_ESC1()
Var4kV_ESC2()
Var4kV_ESC3()
Var4kV_ESC4()

} else if (VUV==0) {
Var4kUV_ESC1()
Var4kUV_ESC2()
Var4kUV_ESC3()

} else {
Var4kBGN_ESC1()
If (UpdateFlag == 1) {

Var4kBGN_ESC2()
Var4kBGN_ESC3()

}
}

}
}

Syntax No. of bits Mnemonic

161

Var2k_ESC0()
{
 VUV , 1-0 2 uimsbf
}

 Voiced Frame (2kbps Variable)

Syntax No. of bits Mnemonic
Var2kV_ESC1()
{
 LSP4, 0 1 uimsbf
 SE_gain, 4-0 5 uimsbf
 LSP1, 4-0 5 uimsbf
 Pitch, 6-1 6 uimsbf
 LSP2, 6 1 uimsbf
}

Syntax No. of bits Mnemonic
Var2kV_ESC2()
{
 LSP3, 4 1 uimsbf
 LSP2, 5 1 uimsbf
}

Syntax No. of bits Mnemonic
Var2kV_ESC3()
{
 SE_shape1, 3-0 4 uimsbf
 SE_shape2, 3-0 4 uimsbf
}

Syntax No. of bits Mnemonic
Var2kV_ESC4()
{
 LSP2, 4-0 5 uimsbf
 LSP3, 3-0 4 uimsbf
 Pitch, 0 1 uimsbf
}

 UnVoiced Frame (2kbps variable)

Syntax No. of bits Mnemonic
Var2kUV_ESC1()
{
 LSP4, 0 1 uimsbf
 VX_gain1[0], 3-0 4 uimsbf

162

 VX_gain1[1], 3-0 4 uimsbf
 LSP1, 4-0 5 uimsbf
 LSP2, 6 1 uimsbf
 LSP2, 5-3 3 uimsbf
}

Syntax No. of bits Mnemonic
Var2kUV_ESC2()
{
 LSP3, 4-3 2 uimsbf
}

Syntax No. of bits Mnemonic
Var2kUV_ESC3()
{
 LSP2, 2-0 3 uimsbf
 LSP3, 2-0 3 uimsbf
}

Syntax No. of bits Mnemonic
Var2kBGN_ESC1()
{
}

Syntax No. of bits Mnemonic
Var4kV_ESC0()
{

VUV,1-0 2 uimsbf
}

Voiced Frame(4kbps variable rate mode)

Syntax No. of bits Mnemonic
Var4kV_ESC1()
{

LSP4,0 1 uimsbf
SE_gain,4-0 5 uimsbf
LSP1, 4-0 5 uimsbf
Pitch, 6-1 6 uimsbf
LSP2, 6-3 4 uimsbf
SE_shape3, 6-2 5 uimsbf

 LSP3, 4 1 uimsbf
 LSP5, 7 1 uimsbf
 SE_shape4, 9 1 uimsbf
 SE_shape5, 8 1 uimsbf

SE_shape6, 5 1 uimsbf
}

163

Syntax No. of bits Mnemonic
Var4kV_ESC2()
{

SE_shape4, 8-0 9 uimsbf
SE_shape5, 7-0 8 uimsbf
SE_shape6, 4-0 5 uimsbf

}

Syntax No. of bits Mnemonic
Var4kV_ESC3()
{

SE_shape1, 3-0 4 uimsbf
SE_shape2, 3-0 4 uimsbf

}

Syntax No. of bits Mnemonic
Var4kV_ESC4()
{

LSP2, 2-0 3 uimsbf
LSP3, 3-0 4 uimsbf
LSP5, 6-0 7 uimsbf
Pitch, 0 1 uimsbf
SE_shape3, 1-0 2 uimsbf

}

Unvoiced Frame(4kbps variable rate mode)

Syntax No. of bits Mnemonic
Var4kUV_ESC1()
{

LSP4, 0 1 uimsbf
VX_gain1[0], 3-0 4 uimsbf
VX_gain1[1], 3-0 4 uimsbf
LSP1, 4-0 5 uimsbf
LSP2, 6 1 uimsbf
LSP2, 5-3 3 uimsbf

}

Syntax No. of bits Mnemonic
Var4kUV_ESC2()
{

LSP3, 4-3 2 uimsbf
}

Syntax No. of bits Mnemonic
Var4kUV_ESC3()
{

LSP2, 2-0 3 uimsbf
LSP3, 2-0 3 uimsbf
VX_shape1[0], 5-0 6 uimsbf
VX_shape1[1], 5-0 6 uimsbf

}

BGN Frame(4kbps)

164

Syntax No. of bits Mnemonic
Var4kBGN_ESC1()
{

UpdateFlag, 0 1 uimsbf
}

Syntax No. of bits Mnemonic
Var4kBGN_ESC2()
{

LSP4, 0 1 uimsbf
VX_gain1[0], 3-0 4 uimsbf
LSP1, 4-0 5 uimsbf
LSP2, 6 1 uimsbf
LSP2, 5-3 3 uimsbf

}

Syntax No. of bits Mnemonic
Var4kBGN_ESC3()
{

LSP3, 4-3 2 uimsbf
LSP2, 2-0 3 uimsbf
LSP3, 2-0 3 uimsbf

}

Scalable mode

Base Layer

Syntax No. of bits Mnemonic
ErHVXCbase_varframe()
{

BaseVar_ESC0()
if (VUV==2 || VUV==3) {

BaseVarV_ESC1()
BaseVarV_ESC2()
BaseVarV_ESC3()
BaseVarV_ESC4()

} else if (VUV==0) {
BaseVarUV_ESC1()
BaseVarUV_ESC2()
BaseVarUV_ESC3()

} else {
BaseVarBGN_ESC1()
if (UpdateFlag == 1) {

BaseVarBGN_ESC2()
BaseVarBGN_ESC3()

}
}

}

Syntax No. of bits Mnemonic
BaseVar_ESC0()
{

VUV, 1-0 2 uimsbf
}

165

Voiced Frame

Syntax No. of bits Mnemonic
BaseVarV_ESC1()
{

LSP4, 0 1 uimsbf
SE_gain, 4-0 5 uimsbf
LSP1, 4-0 5 uimsbf
Pitch, 6-1 6 uimsbf
LSP2, 6 1 uimsbf

}

Syntax No. of bits Mnemonic
BaseVarV_ESC2()
{

LSP3, 4 1 uimsbf
LSP2, 5 1 uimsbf

}

Syntax No. of bits Mnemonic
BaseVarV_ESC3()
{

SE_shape1, 3-0 4 uimsbf
SE_shape2, 3-0 4 uimsbf

}

Syntax No. of bits Mnemonic
BaseVarV_ESC4()
{

LSP2, 4-0 5 uimsbf
LSP3, 3-0 4 uimsbf
Pitch, 0 1 uimsbf

}

Unvoiced Frame

Syntax No. of bits Mnemonic
BaseVarUV_ESC1()
{

LSP4, 0 1 uimsbf
VX_gain1[0], 3-0 4 uimsbf
VX_gain1[1], 3-0 4 uimsbf
LSP1, 4-0 5 uimsbf
LSP2, 6 1 uimsbf
LSP2, 5-3 3 uimsbf

}

Syntax No. of bits Mnemonic
BaseVarUV_ESC2()
{

LSP3, 4-3 2 uimsbf
}

166

Syntax No. of bits Mnemonic
BaseVarUV_ESC3()
{

LSP2, 2-0 3 uimsbf
LSP3, 2-0 3 uimsbf
VX_shape1[0], 5-0 6 uimsbf
VX_shape1[1], 5-0 6 uimsbf

}

BGN Frame

Syntax No. of bits Mnemonic
BaseVarBGN_ESC1()
{

UpdateFlag, 0 1 uimsbf
}

Syntax No. of bits Mnemonic
BaseVarBGN_ESC2()
{

LSP4, 0 1 uimsbf
VX_gain1[0], 3-0 4 uimsbf
LSP1, 4-0 5 uimsbf
LSP2, 6 1 uimsbf
LSP2, 5-3 3 uimsbf

}

Syntax No. of bits Mnemonic
BaseVarBGN_ESC3()
{

LSP3, 4-3 2 uimsbf
LSP2, 2-0 3 uimsbf
LSP3, 2-0 3 uimsbf

}

Enhancement Layer

Syntax No. of bits Mnemonic
ErHVXCenh_varframe()
{

if (VUV==2 || VUV==3) {
EnhVarV_ESC1()
EnhVarV_ESC2()
EnhVarV_ESC3()

}
}

Voiced Frame

Syntax No. of bits Mnemonic
EnhVarV_SC1()
{

SE_shape3, 6-2 5 uimsbf
LSP5, 7 1 uimsbf
SE_shape4, 9 1 uimsbf

167

SE_shape5, 8 1 uimsbf
SE_shape6, 5 1 uimsbf

}

Syntax No. of bits Mnemonic
EnhVarV_SC2()
{

SE_shape4, 8-0 9 uimsbf
SE_shape5, 7-0 8 uimsbf
SE_shape6, 4-0 5 uimsbf

}

Syntax No. of bits Mnemonic
EnhVarV_SC3()
{

LSP5, 6-0 7 uimsbf
SE_shape3, 1-0 2 uimsbf

}

10.3.2� General information

TBD

10.3.3� Tool description

TBD

10.4� TwinVQ

10.4.1� Syntax

Table 10.4.1 Syntax of TVQ_frame()

Syntax No. of bits Mnemonic
TVQ_frame()
{
 Error_Sensitivity_Category1()
 Error_Sensitivity_Category2()
 Error_Sensitivity_Category3()
 Error_Sensitivity_Category4()
}

Table 10.4.2 Syntax of Error_Sensitivity_Category1()

Syntax No. of bits Mnemonic
Error_Sensitivity_Category1()
{

Window_sequence 2 bslbf
window_shape 1 bslbf
if(this_layer_stereo) {

ms_mask_present 2 bslbf
if(ms_mask_present == 1) {

if (window_sequence ==
EIGHT_SHORT_SEQUENCE)

 scale_factor_grouping 7 bslbf

168

ms_data()
}

}

for(ch=0; ch< (this_layer_stereo ? 2:1); ch++) {
ltp_data_present 1 bsblf
if (ltp_data_present)

ltp_data ()

tns_data_present 1 bslbf
if(tns_data_present)

tns_data()
}

 bandlimit_present 1 uimsbf
if (window_sequence != EIGHT_SHORT_SEQUENCE){

 ppc_present 1 uimsbf
 postprocess _present 1 uimsbf

}
if (bandlimit_present){

for (i_ch=0; i_ch<n_ch; i_ch++){
index_blim_h[i_ch] 2 uimsbf
index_blim_l[i_ch] 1 uimsbf

}
}
if (ppc_present){

for (idiv=0; idiv<N_DIV_P; idiv++){
index_shape0_p[idiv] 7 uimsbf
index_shape1_p[idiv] 7 uimsbf

}
for (i_ch=0; i_ch<n_ch; i_ch++){

index_pit[i_ch] 8 uimsbf
index_pgain[i_ch] 7 uimsbf

}
}

for (i_ch=0; i_ch<n_ch; i_ch++){
index_gain[i_ch] 8..9 uimsbf
if (N_SF[b_type]>1){

for (isbm=0; isbm<N_SF[b_type]; isbm++){
index_gain_sb[i_ch][isbm] 4 uimsbf

}
}

}
for (i_ch=0; i_ch<n_ch; i_ch++){

index_lsp0[i_ch] 1 uimsbf
index_lsp1[i_ch] 6 uimsbf
for (isplt=0; isplt<LSP_SPLIT; isplit++){

index_lsp2[i_ch][isplt] 4 uimsbf
}

}

for (i_ch=0; i_ch<n_ch; i_ch++){
for (isb=0; isb<N_SF; isb++){

for (ifdiv=0; ifdiv<FW_N_DIV; ifdiv++){
index_env[i_ch][isb][ifdiv] 0,6 uimsbf

}
}

}

169

for (i_ch=0; i_ch<n_ch; i_ch++){
for (isbm=0; isbm<N_SF; isbm++){

index_fw_alf[i_ch][isbm] 0,1 uimsbf
}

}
}

Table 10.4.3 Syntax of Error_Sensitivity_Category2()

Syntax No. of bits Mnemonic
Error_Sensitivity_Category2()
{

for (idiv=0; idiv<N_DIV; idiv++){
index_shape0[idiv] 5/6 uimsbf
index_shape1[idiv] 5/6 uimsbf

}
}

Table 10.4.4 Syntax of Error_Sensitivity_Category3()

Syntax No. of bits Mnemonic
Error_Sensitivity_Category3()
{

if(this_layer_stereo) {
ms_mask_present 2 bslbf
if(ms_mask_present == 1) {

ms_data()
}

}

for (i_ch=0; i_ch<n_ch; i_ch++){
fb_shift[i_ch] 2 uimsbf

 }

for (i_ch=0; i_ch<n_ch; i_ch++){
index_gain[i_ch] 8..9 uimsbf
if (N_SF[b_type]>1){

for (isbm=0; isbm<N_SF[b_type]; isbm++){
index_gain_sb[i_ch][isbm] 4 uimsbf

}
}

}
for (i_ch=0; i_ch<n_ch; i_ch++){

index_lsp0[i_ch] 1 uimsbf
index_lsp1[i_ch] 6 uimsbf
for (isplt=0; isplt<LSP_SPLIT; isplit++){

index_lsp2[i_ch][isplt] 4 uimsbf
}

}

for (i_ch=0; i_ch<n_ch; i_ch++){
for (isb=0; isb<N_SF; isb++){

for (ifdiv=0; ifdiv<FW_N_DIV; ifdiv++){
index_env[i_ch][isb][ifdiv] 0,6 uimsbf

}
}

}

170

for (i_ch=0; i_ch<n_ch; i_ch++){
for (isbm=0; isbm<N_SF; isbm++){

index_fw_alf[i_ch][isbm] 0,1 uimsbf
}

 }
}

Table 10.4.5 Syntax of Error_Sensitivity_Category4()

Syntax No. of bits Mnemonic
Error_Sensitivity_Category4()
{

for (idiv=0; idiv<N_DIV; idiv++){
index_shape0[idiv] 5/6 uimsbf
index_shape1[idiv] 5/6 uimsbf

}
}

Table 10.4.6 Syntax of ltp_data()

Syntax No. of bits Mnemonic
ltp_data()
{

ltp_lag 11 uimsbf
ltp_coef 3 uimsbf
if(window_sequence==EIGHT_SHORT_SEQUENCE) {

for (w=0; w<num_windows; w++) {
ltp_short_used[w] 1 uimsbf
if (ltp_short_used [w]) {

ltp_short_lag_present[w] 1 uimsbf
}

 if (ltp_short_lag_present[w]) {
 ltp_short_lag[w] 4 uimsbf

}
 }

} else {
 for (sfb=0; sfb<max_sfb; sfb++) {

ltp_long_used[sfb] 1 uimsbf
}

}
}

Table 10.4.7 Syntax of tns_data()

Syntax No. of bits Mnemonic
tns_data()
{

for (w=0; w<num_windows; w++) {
n_filt[w] 1..2 uimsbf
if (n_filt[w])

coef_res[w] 1 uimsbf
for (filt=0; filt<n_filt[w]; filt++) {

length[w][filt] {4;6} uimsbf
order[w][filt] {3;5} uimsbf
if (order[w][filt]) {

direction[w][filt] 1 uimsbf

171

coef_compress[w][filt] 1 uimsbf
for (i=0; i<order[w][filt]; i++)

coef[w][filt][i] 2..4 uimsbf
}

}
}

}

Table 10.4.8 Syntax of ms_data()

Syntax No. of bits Mnemonic
ms_data()
{

for(g=0; g<num_window_groups; g++) {
for(sfb=last_max_sfb_ms; sfb<max_sfb; sfb++) {

ms_used[g][sfb]; 1 bslbf
}

}
}

10.4.2� General information

TBD

10.4.3� Tool description

TBD

10.5� AAC

10.5.1� Syntax

Table 10.5.1 - Syntax of error resilient top-level payload for audio object types AAC LC and LD

Syntax No. of bits Mnemonic
er_raw_data_block()
{

if (channelConfiguration == 0) {
/* reserved */

}
if (channelConfiguration == 1) {

single_channel_element ();
}
if (channelConfiguration == 2) {

channel_pair_element ();
}
if (channelConfiguration == 3) {

single_channel_element ();
channel_pair_element ();

}
if (channelConfiguration == 4) {

single_channel_element ();
channel_pair_element ();
single_channel_element ();

}
if (channelConfiguration == 5) {

single_channel_element ();

172

channel_pair_element ();
channel_pair_element ();

}
if (channelConfiguration == 6) {

single_channel_element ();
channel_pair_element ();
channel_pair_element ();
lfe_channel_element ();

}
if (channelConfiguration == 7) {

single_channel_element ();
channel_pair_element ();
channel_pair_element ();
channel_pair_element ();
lfe_channel_element ();

}
if (channelConfiguration >= 8) {

/* reserved */
}
cnt = bits_to_decode() / 8
while (cnt >= 1) {

cnt -= extension_payload(cnt);
}

}

10.5.2� General Information

For AAC, two kinds of bitstream syntax are available: scalable and multichannel. The following changes have to be applied
to them:

• Multichannel AAC: The syntax of the top-level payload has been modified. raw_data_block() is replaced by
er_raw_data_block() as described in Table 10.5.1. Please note, that due to this modification
coupling_channel_element (), data_stream_element (), program_config_element (), and fill_element () are not
supported within the error resilient bitstream syntax.

• Scalable AAC: The syntax of aac_scalable_main_element () is not changed for error resilience.

No other changes regarding syntax occur.

Data elements are subdivided into different categories depending on its error sensitivity and collected in instances of these
categories.

One error resilient AAC frame is set up by concatenating all instances belonging to this frame. An error resilient AAC bit
stream is built by consecutive error resilient AAC frames.

Alternatively one instance or any number of successive instances might be stored into separate access units, whereas
these access units are assigned to different elementary streams.

The order of these instances within an error resilient AAC frame is described within the next section. If separate access
units are used, the dependency structure between elementary streams has to be set up according to this order.

173

10.5.3� Tool Description

10.5.3.1� Error Sensitivity Category Assignment

The following table gives an overview about the error sensitive categories used for AAC (channel_pair_element = CPE,
individual_channel_stream() = ICS, extension_payload() = EPL):

category payload mandatory leads / may lead to one
instance per

description

0 main yes CPE commonly used side information

1 main yes ICS channel dependent side information

2 main no ICS error resilient scale factor data

3 main no ICS TNS data

4 main yes ICS spectral data and some other insensitive data
elements

5 extended no EPL extension type

6 extended no EPL DRC data

7 extended no EPL bit stuffing

Table 10.5.2shows the category assignment for the main payload (supported elements are SCE, LFE, and CPE). Within
this table “ - “ means that this data element does not occur within this configuration.

Table 10.5.4.3shows the category assignment for the extended payload.

10.5.3.2� Category Instances and its Dependency Structure

The subdivision into instances is done on a frame basis, in case of scalable syntax in addition on a layer basis.

The order of instances within the error resilient AAC frame/layer as well as the dependency structure in case of several
elementary streams is assigned according to the following rules:

hierarchy level error resilient multi-channel syntax error resilience scalable syntax
frame / layer base payload followed by extension payload
base payload order of syntactic elements follows

order stated in Table 10.25
commonly used side information

followed by ICSs
extended payload no rule regarding the order of multiple EPLs is given, the kind of extension

payload can be identified by extension_type
syntactic element in base
payload

commonly used side information
followed by ICSs

-

ICS order in case of stereo left channel followed by right channel
ICS / EPL dependency structure according to instance numbers

Figure 10.5.1 shows an example for the error resilient multi-channel syntax.

174

10.5.4� Tables

Table 10.5.2 AAC error sensitivity category assignment for main payload
S

C
E

, L
F

E

C
P

E
, c

om
m

on
_w

in
do

w
 =

=
 0

C
P

E
, c

om
m

on
_w

in
do

w
 =

=
 1

da
ta

_e
le

m
en

t

fu
nc

tio
n

1 - 0 max_sfb aac_scalable_extension_header()
- - 0 ms_mask_present aac_scalable_extension_header()
1 - 1 tns_data_present aac_scalable_extension_header()
1 - 0 ics_reserved_bit aac_scalable_main_header()
1 - 1 ltp_data_present aac_scalable_main_header()
1 - 0 max_sfb aac_scalable_main_header()
- - 0 ms_mask_present aac_scalable_main_header()
1 - 0 scale_factor_grouping aac_scalable_main_header()
1 - 0 tns_channel_mono_layer aac_scalable_main_header()
1 - 1 tns_data_present aac_scalable_main_header()
1 - 0 window_sequence aac_scalable_main_header()
4 - 4 window_shape aac_scalable_main_header()
- 0 0 common_window channel_pair_element()
4 4 4 element_instance_tag channel_pair_element()
- - 0 ms_mask_present channel_pair_element()
- - 0 ms_used channel_pair_element()
1 1 1 diff_control diff_control_data()
1 1 1 diff_control_lr diff_control_data_lr()
1 0 0 ics_reserved_bit ics_info()
1 0 0 ltp_data_present ics_info()
1 0 0 max_sfb ics_info()
1 0 0 predictor_data_present ics_info()
1 0 0 scale_factor_grouping ics_info()
1 0 0 window_sequence ics_info()
4 4 4 window_shape ics_info()
1 1 1 gain_control_data_present individual_channel_stream()
1 1 1 global_gain individual_channel_stream()
1 1 1 length_of_longest_codeword individual_channel_stream()
1 1 1 length_of_reordered_spectral_data individual_channel_stream()
1 1 1 pulse_data_present individual_channel_stream()
1 1 1 tns_data_present individual_channel_stream()
4 4 4 element_instance_tag lfe_channel_element()
1 1 1 ltp_coef ltp_data()
1 1 1 ltp_lag ltp_data()
1 1 1 ltp_lag_update ltp_data()
1 1 1 ltp_long_used ltp_data()
1 1 1 ltp_short_lag ltp_data()
1 1 1 ltp_short_used ltp_data()
- - 0 ms_used ms_data()
1 1 1 number_pulse pulse_data()
1 1 1 pulse_amp pulse_data()
1 1 1 pulse_offset pulse_data()
1 1 1 pulse_start_sfb pulse_data()

175

4 4 4 reordered_spectral_data reordered_spectral_data()
1 1 1 dpcm_noise_nrg scale_factor_data()
1 1 1 dpcm_noise_last_position scale_factor_data()
1 1 1 hcod_sf scale_factor_data()
1 1 1 length_of_rvlc_escapes scale_factor_data()
1 1 1 length_of_rvlc_sf scale_factor_data()
1 1 1 rev_global_gain scale_factor_data()
3 3 3 rvlc_cod_sf scale_factor_data()
3 3 3 rvlc_esc_sf scale_factor_data()
1 1 1 sf_concealment scale_factor_data()
1 1 1 sf_escapes_present scale_factor_data()
1 1 1 sect_cb section_data()
1 1 1 sect_len_incr section_data()
4 4 4 element_instance_tag single_channel_element()
4 4 4 hcod spectral_data()
4 4 4 hcod_esc_y spectral_data()
4 4 4 hcod_esc_z spectral_data()
4 4 4 pair_sign_bits spectral_data()
4 4 4 quad_sign_bits spectral_data()
2 2 2 coef tns_data()
2 2 2 coef_compress tns_data()
2 2 2 coef_res tns_data()
2 2 2 direction tns_data()
2 2 2 length tns_data()
2 2 2 n_filt tns_data()
2 2 2 order tns_data()

Table 10.5.4.3 AAC error sensitivity category assignment for extended payload

E
xt

en
si

on
_p

ay
lo

ad

D
at

a_
el

em
en

t

fu
nc

tio
n

6 drc_band_top dynamic_range_info()
6 drc_bands_incr dynamic_range_info()
6 drc_bands_present dynamic_range_info()
6 drc_bands_reserved_bits dynamic_range_info()
6 drc_tag_reserved_bits dynamic_range_info()
6 dyn_rng_ct dynamic_range_info()
6 dyn_rng_sgn dynamic_range_info()
6 excluded_chns_present dynamic_range_info()
6 pce_instance_tag dynamic_range_info()
6 pce_tag_present dynamic_range_info()
6 prog_ref_level dynamic_range_info()
6 prog_ref_level_present dynamic_range_info()
6 prog_ref_level_reserved_bits dynamic_range_info()
6 additional_excluded_chns excluded_channels()
6 exclude_mask excluded_channels()
5 extension_type extension_payload()

176

7 fill_byte extension_payload()
7 fill_nibble extension_payload()
7 other_bits extension_payload()

10.5.5� Figures

0a

1b

2b

3b

4b

1c

2c

3c

4c

L R

0b

1d

2d

3d

4d

1e

2e

3e

4e

L R

1a

2a

3a

4a

1f

2f

3f

4f

SCE CPE CPE LFE

5a

6a 7a

ext. payloads

5b

DRC bit
stuffing

Figure 10.5.1 Dependency structure in case of error resilient multichannel AAC syntax
(channelConfiguration == 6)

11� Silence Compression Tool

11.1� Overview of the silence compression tool

The silence compression tool comprises a Voice Activity Detection (VAD), a Discontinuous Transmission (DTX) and a
Comfort Noise Generator (CNG) modules. The tool encodes/decodes the input signal at a lower bitrate during the non-
active-voice (silence) frames. During the active-voice (speech) frames, MPEG-4 CELP encoding and decoding are used. A
block diagram of the CELP codec system with the silence compression tool is depicted in Figure 11.1.1.

6!$

-0%'
��
#%,0
%NCODER

$48�MODULE

"
IT
ST
RE
A
M
�-
5
8

$48?FLAG

48?FLAG

"
IT
ST
RE
A
M
�$
EV
ID
ER

#.'�MODULE

-0%'
��
#%,0
$ECODER

48?FLAG

0RE

0ROCESSING

6!$?FLAG

177

Figure 11.1.1 - Block diagram of the codec system with the silence compression tool

At the transmission side, the DTX module encodes the input speech during the non-active-voice frames. During the active-
voice frames, the MPEG-4 CELP encoder is used. The voice activity flag (VAD_flag) indicating a non-active-voice frame
(VAD_flag=0) or an active-voice frame (VAD_flag=1) is determined from the input speech by the VAD module. During the
non-active-voice frames, the DTX module detects frames where the input characteristics change (DTX_flag=1 and 2:
Change, DTX_flag=0: No Change). When a change is detected, the DTX module encodes the input speech to generate a
SID (SIlence Descriptor) information. The VAD_flag and the DTX_flag are sent together as a TX_flag to the decoder to
keep synchronization between the encoder and the decoder.

At the receive side, the CNG module generates a comfort noise based on the SID information during the non-active-voice
frames. During the active-voice frames, the MPEG-4 CELP decoder is used instead. Either the CNG module or the MPEG-
4 CELP decoder is selected according to the TX_flag.

The SID information and the TX_flag are transmitted only when a change of the input characteristics is detected and
otherwise only the TX_flag is transmitted during non-active-voice frames. Therefore, the bitrate with silence compression is
made lower compared to the MPEG-4 CELP.

11.2� Definitions

CNG: Comfort Noise Generation

Coding mode: “I” for the RPE and “II” for the MPE (see Table 3.1 of ISO/IEC 14496-3)

DTX: Discontinuous Transmission

LP: Linear Prediction

LPCs: LP Coefficients

MPE: Multi-Pulse Excitation

MPE_Configuration: see Table 3.64 of ISO/IEC 14496-3

RMS: root mean square

RPE: Regular-Pulse Excitation

SID: SIlence Descriptor

SID frame: frame where the SID information is sent/received

signal mode: mode determined based on the average pitch prediction gain (see subclause 3.B.9.2.3 of ISO/IEC 14496-3)

VAD: Voice Activity Detection

11.3� Specifications of the silence compression tool

11.3.1� Transmission Payload

There are four types of transmission payloads depending on the VAD/DTX decision. A TX_flag indicates the type of
transmission payloads and is determined by the VAD_flag and the DTX_flag as shown in Table 11.3.1Fehler!
Verweisquelle konnte nicht gefunden werden.. When the TX_flag indicates the active-voice frame (TX_flag=1),
information generated by the MPEG-4 CELP decoder and the TX_flag are transmitted. When the TX_flag indicates a
transition frame between an active-voice frame and a non-active-voice frame, or a non-active-voice frame in which the
spectral characteristics of the input signal changes (TX_flag=2), a High-Rate (HR) SID information and the TX_flag are
transmitted to update the CNG parameters. When the TX_flag indicates a non-active-voice frame in which the frame
power of the input signal changes (TX_flag=3), a Low-Rate (LR) SID information and the TX_flag are transmitted. Other
non-active-voice frames are categorized into the fourth type of the TX_flag (TX_flag=0). In this case, only the TX_flag is
transmitted. Examples of the TX_flag change according to the VAD_flag and the DTX_flag are shown inFigure 11.3.1.

178

Table 11.3.1 -�2ELATION�AMONG�FLAGS�FOR�THE�SILENCE�COMPRESSION�TOOL

&LAGS !CTIVE
VOICE .ON
ACTIVE
VOICE
VAD_flag 1 0
DTX_flag * 0 1 2
TX_flag 1 0 2 3

Frame# ...k-5 k-4 k-3 k-2 k-1 k k+1 k+2 k+3 k+4 k+5 k+6 k+7
VAD_flag ...1 1 1 1 0 0 0 0 0 0 0 0 0...
DTX_flag ...-*1 - - - 1 0 0 0 1 0 0 0 2...
TX_flag ...1 1 1 1 2 0 0 0 2 0 0 0 3...

-active-voice period -| |------ non-active-voice period --------------------------------------

Figure 11.3.1 - Examples of the TX_flag change according to the VAD_flag and the DTX_flag

11.3.2� Bitrates of the silence compression tool

The silence compression tool operates during non-active-voice frames at bitrates shown in Table 11.3.2. The bitrate
depends on the coding mode defined in Table 3.1 of ISO/IEC 14496-3, the sampling rate and the frame length for the
MPEG-4 CELP combined with the silence compression tool.

Table 11.3.2 - Bitrates for the silence compression tool

Coding
mode

Sampling
rate [kHz]

Band width
scalability

Frame length [ms] Bitrate [bit/s]

HR-SID LR-SID
I 16 - 20 1900 300

10 3800 600
II 8 On* , Off 40 525 150

30 700 200
20 1050 300
10 2100 600

16 Off 20 1900 300
10 3800 600

On 40 1050 150
30 1400 200
20 2100 300
10 4200 600

11.3.3� Algorithmic delay of the silence compression tool

The algorithmic delay is the same as that of the MPEG-4 CELP, since the same frame length and the same additional look
ahead length are used.

11.4� Syntax

This section describes the bitstream syntax and the bitstream semantics for the silence compression tool. The payload
data for the ER CELP object is transmitted as AL-PDU payload in the base layer and the optional enhancement layer
Elementary Stream.

Error Resilient CELP Base Layer -- Access Unit payload

alPduPayload {

 The DTX_flag is not determined during the active-voice frames (VAD_flag=1).

 This occurs when decoding from BWS bitstreams is performed.

179

ER_SC_CelpBaseFrame();
}

Error Resilient CELP Enhancement Layer -- Access Unit payload

To parse and decode the Error Resilient CELP enhancement layer, information decoded from the Error Resilient CELP
base layer is required. For the bitrate scalable mode, the following data for the Error Resilient CELP enhancement layer
has to be included:

alPduPayload {
SC_CelpBRSenhFrame();

}

For the bandwidth scalable mode, the following data for the Error Resilient CELP enhancement layer has to be included:

alPduPayload {
SC_CelpBWSenhFrame();

}

11.4.1� Bitstream syntax

The bitstream syntax of ER_SC_CelpHeader(), ER_SC_CelpBaseFrame(), SID_LSP_VQ(), SC_CelpBRSenhFrame(),
SC_CelpBWSenhFrame(), ER_SC_CelpBWSenhFrame(), SID_NarrowBand_LSP(), SID_BandScalable_LSP(),
SID_WideBand_LSP() and SID_MPE_frame() are shown in Table 11.4.1 throughTable 11.4.9.

Table 11.4.1 - Syntax of ER_SC_CelpHeader()

Syntax No. of bits Mnemonic
ER_SC_CelpHeader (samplingFrequencyIndex)
{

ExcitationMode 1 uimsbf
SampleRateMode 1 uimsbf
FineRateControl 1 uimsbf
SilenceCompressionSW 1 uimsbf

if (ExcitationMode==RPE) {
 RPE_Configuration 3 uimsbf

}
if (ExcitationMode==MPE) {

MPE_Configuration 5 uimsbf
NumEnhLayers 2 uimsbf
BandwidthScalabilityMode 1 uimsbf

}
}

Table 11.4.2 - Syntax of ER_SC_CelpBaseFrame()

Syntax No. of bits Mnemonic
ER_SC_CelpBaseFrame()
{
 if (SilenceCompressionSW==OFF) {

 ER_CelpBaseFrame()

 }else {
 TX_flag 2 uimsbf

 if (TX_flag == 1) {

180

 ER_CelpBaseFrame()

 }else if (TX_flag == 2) {
 SID_LSP_VQ()

 SID_Frame()
 } else if (TX_flag == 3) {

 SID_Frame()
 }
 }
}

Table 11.4.3 - Syntax of SID_LSP_VQ()

Syntax No. of bits Mnemonic
SID_LSP_VQ()
{

if (SampleRateMode==8kHz) {
SID_NarrowBand_LSP()

}else{
 SID_WideBand_LSP()
 }
}

Table 11.4.4 - Syntax of CelpBRSenhFrame()

Syntax No. of bits Mnemonic
SC_CelpBRSenhFrame()
{

if (SilenceCompressionSW==OFF) {
 CelpBRSenhFrame()

}else if (TX_flag == 1) {
 CelpBRSenhFrame()
 }
}

Table 11.4.5 - Syntax of SC_CelpBWSenhFrame()

Syntax No. of bits Mnemonic
SC_CelpBWSenhFrame()
{

if (SilenceCompressionSW==OFF) {
CelpBWSenhFrame()

}else{
 if (TX_flag == 1) {

 CelpBWSenhFrame()
 }
 if (TX_flag == 2) {

 SID_BandScalable_LSP()
 }
 }
}

Table 11.4.6 - Syntax of SID_NarrowBand_LSP()

Syntax No. of bits Mnemonic
SID_NarrowBand_LSP()
{

SID_lpc_indices [0] 4 uimsbf
SID_lpc_indices [1] 4 uimsbf
SID_lpc_indices [2] 7 uimsbf

}

181

Table 11.4.7 - Syntax of SID_BandScalable_LSP()

Syntax No. of bits Mnemonic
SID_BandScalable_LSP()
{

SID_lpc_indices [3] 4 uimsbf
SID_lpc_indices [4[7 uimsbf
SID_lpc_indices [5] 4 uimsbf
SID_lpc_indices [6] 6 uimsbf

}

Table 11.4.8 - Syntax of SID_WideBand_LSP()

Syntax No. of bits Mnemonic
SID_WideBand_LSP()
{

SID_lpc_indices [0] 5 uimsbf
SID_lpc_indices [1] 5 uimsbf
SID_lpc_indices [2] 7 uimsbf
SID_lpc_indices [3] 7 uimsbf
SID_lpc_indices [4] 4 uimsbf
SID_lpc_indices [5] 4 uimsbf

}

Table 11.4.9 - Syntax of SID_MPE_frame()

Syntax No. of bits Mnemonic
SID_frame()
{

SID_rms_index 6 uimsbf
}

11.4.2� Bitstream semantics

Bitstream semantics for the silence compression tool are shown in Table 11.4.10.

Table 11.4.10 - Bitstream semantics for the silence compression tool

HR/LR-SID Coding
mode

Sampling
rate
[kHz]

Band width
scalability

Parameter Description

HR-SID I 16 Off TX_flag
SID_rms_index
SID_lpc_indices[0]
SID_lpc_indices[1]
SID_lpc_indices[2]
SID_lpc_indices[3]
SID_lpc_indices[4]
SID_lpc_indices[5]

Two bits indicating transmission mode
Frame energy
0-4th LSPs of the 1st stage VQ
5-9th LSPs of the 1st stage VQ
10-14th LSPs of the 1st stage VQ
15-19th LSPs of the 1st stage VQ
0-4th LSPs of the 2nd stage VQ
5-9th LSPs of the 2nd stage VQ

II 8 On, Off TX_flag
SID_rms_index
SID_lpc_indices[0]
SID_lpc_indices[1]
SID_lpc_indices[2]

Two bits indicating transmission mode
 Frame energy
0-4th LSPs of the 1st stage VQ
5-9th LSPs of the 1st stage VQ
0-4th LSPs of the 2nd stage VQ

16 On TX_flag
SID_rms_index
SID_lpc_indices[3]
SID_lpc_indices[4]
SID_lpc_indices[5]
SID_lpc_indices[6]

Two bits indicating transmission mode
Frame energy
0-9th LSPs of 1st stage VQ
11-19th LSPs of 1st stage VQ
0-4th LSPs of 2nd stage VQ
5-9th LSPs of 2nd stage VQ

182

16 Off TX_flag
SID_rms_index
SID_lpc_indices[0]
SID_lpc_indices[1]
SID_lpc_indices[2]
SID_lpc_indices[3]
SID_lpc_indices[4]
SID_lpc_indices[5]

Two bits indicating transmission mode
Frame energy
0-4th LSPs of 1st stage VQ
5-9th LSPs of 1st stage VQ
10-14th LSPs of 1st stage VQ
15-19th LSPs of 1st stage VQ
0-4th LSPs of 2nd stage VQ
5-9th LSPs of 2nd stage VQ

LR-SID I, II 8, 16 On, Off TX_flag
SID_rms_index

Two bits indicating transmission mode
Frame energy

11.5� CNG module

Figure 11.5.1 depicts a structure of the CNG module, which generates a comfort noise as the output. The noise is
generated by filtering an excitation with an LP synthesis filter in a similar manner to the MPEG-4 CELP decoder. The post
filter may be used to improve the coding quality.

The excitation is given by adding a Multi-Pulse (MP) and a random excitations scaled by the corresponding gains. The
excitations are generated based on a random sequence independent of the SID information. The coefficients for the LP
synthesis filter and gains are calculated from LSPs and an RMS (frame energy), respectively, which are received as the
SID information. The LSPs and the RMS are used after smoothing to improve the coding quality for the noisy input speech.

The CNG module uses the same frame and subframe sizes as those in the active speech frame. Processing in each part
is described in the following sub-clauses.

"
IT
ST
RE
AM

�$
IV
ID
ER

,30
$ECODER

,30
3MOOTHER

2-3
$ECODER

2-3
3MOOTHER

'AIN
#ALCULATOR

3UBFRAME
)NTERPOLATOR

,30
,0#
#ONVERTER

2ANDOM
'ENERATOR

-0
%XCITATION

2ANDOM
%XCITATION

�
,0�3YNTHESIS

&ILTER
0OST
&ILTER

3)$?LPC?INDICES;=

3)$?RMS?INDEX

NORM;=

LPC?CURRENT?SM;=

NORM?SM;=

GF GR

FCB?CNG;=

EXCG;=

EXCITATION;=

,0#�DECODING

00?SYNTH?SIGNAL;=

Figure 11.5.1: CNG module

11.5.1� Definitions

Input

TX_flag This field contains the transmission mode.

SID_lpc_indices[] This array contains the packed LP indices. The dimension is 3, 5 or 6 (see
Table 11.4.10).

SID_rms_index This field contains the RMS index.

183

Output

PP_synth_signal[] This array contains the post-filtered (enhanced) speech signal. The
dimension is sbfrm_size.

The following are help elements used in the CNG module:

lpc_order: the order of LP

sbfrm_size: the number of samples in a subframe

n_subframe: the number of subframes in a frame

int_Q_lpc_coefficients[]: interpolated LPCs (see subclause 3.5.8.2 of ISO/IEC 14496-3).

11.5.2� LSP decoder

LSP lpc_current[] is decoded from the LSP indices SID_lpc_indices[]. The decoding process is identical to that described in
subclause 3.5.6 of ISO/IEC 14496-3 with the following exceptions :

(1) A sub-part of lpc_indices[] for the MPEG-4 CELP is transmitted to the decoder. A relation between the transmitted LSP
indices SID_lpc_indices[] and the LSP indices for the MPEG-4 CELP, lpc_indices[] is shown in Table 11.5.1.

(2) The decoding process corresponding to the untransmitted indices for the MPEG-4 CELP is not carried out.

Table 11.5.1: LSP index relation between the silence compression tool and MPEG-4 CELP

Coding mode Sampling
rate [kHz]

Band width
scalability

Silence compression tool MPEG-4 CELP

I 16 Off SID_lpc_indices[0] lpc_indices[0]
SID_lpc_indices[1] lpc_indices[1]
SID_lpc_indices[2] lpc_indices[2]
SID_lpc_indices[3] lpc_indices[3]
SID_lpc_indices[4] lpc_indices[5]
SID_lpc_indices[5] lpc_indices[6]

II 8 Off SID_lpc_indices[0] lpc_indices[0]
SID_lpc_indices[1] lpc_indices[1]
SID_lpc_indices[2] lpc_indices[2]

16 On SID_lpc_indices[3] lpc_indices[5]
SID_lpc_indices[4] lpc_indices[6]
SID_lpc_indices[5] lpc_indices[7]
SID_lpc_indices[6] lpc_indices[8]

Off SID_lpc_indices[0] lpc_indices[0]
SID_lpc_indices[1] lpc_indices[1]
SID_lpc_indices[2] lpc_indices[2]
SID_lpc_indices[3] lpc_indices[3]
SID_lpc_indices[4] lpc_indices[5]
SID_lpc_indices[5] lpc_indices[6]

11.5.3� LSP smoother

Smoothed LSPs lsp_current_sm[] are updated using the decoded LSPs lsp_current[] in each frame as:





=+
=+

=
�OR�48?FLAGID;I=�?CURRENT?S�������LSP;I=�CURRENT?SM������LSP?

�48?FLAG=��?CURRENT;I�������LSP;I=�CURRENT?SM������LSP?
T?SM;I=LSP?CURREN

184

where i=0,...,lpc_order-1 and lsp_current_sid[] is lsp_current[] in the last SID frame. At the beginning of every non-active-
voice period, lsp_current_sm[] is initialized with lsp_current[] at the end of the previous active-voice period.

11.5.4� LSP interpolation and LSP-LPC conversion

LPCs for the LP synthesis, int_Q_lpc_coefficients[] are calculated from the smoothed LSPs lpc_current_sm[] using the
LSP interpolation with the stabilization and the LSP-to-LPC conversion. These processes are identical to those described
in subclause 3.5.6 of ISO/IEC 14496-3. A common buffer for the previous frame lsp_previous[] is used in both the silence
compression tool and the MPEG-4 CELP.

11.5.5� RMS Decoder

The RMS of the input speech qxnorm in each subframe is reconstructed using SID_rms_index in the same process as
described in subclause 3.5.7.2.3.2 of ISO/IEC 14496-3 with the exception that the µ -law parameters are independent of

the signal mode and set as rms_max=7932 and mu_law=1024.

The reconstructed RMS of the input speech is converted into the RMS of the excitation signal (norm) using the reflection
coefficients par[] as follows and used for the gain calculation:

norm = (qxnorm*subfrm_size)*(qxnorm*subfrm_size);

for(i = 0; i < lpc_order; i++)

{

norm *= (1 - par[i] * par[i])*
S

α ;

}

where par[] is calculated from the LPCs int_Qlpc_coefficients[] and a scaling factor
S

α is 0.8.

11.5.6� RMS Smoother

A smoothed RMS norm_sm is updated using norm in each subframe as follows:





=+
=+

=
�48?FLAGFORM?SID�������NOR?SM�������NORM

�OR�48?FLAGFORM;SUBNUM=�������NOR?SM�������NORM
NORM?SM�

where subnum is the current subframe number ranging from 0 to n_subframe-1 and norm_sid is norm[n_subframe-1] in
the last SID frame. In the first frame of every non-active-voice period, norm_sm is set to norm. During the first 40 msec of
the non-active-voice period, norm_sm is initialized with nrom[subnum], when TX_flag=2 or 3 and

D"�=SUBFRAMENORM;N��LOGNORM?SID��LOG
����

<−− 1_ .

11.5.7� CNG excitation generation

The CNG excitation signal excitation[] is computed from a multi-pulse excitation signal and a random excitation signal as
follows:

for (i = 0; i < sbfrm_size; i++)

{

excitation[i] = gf * fcb_cng[i] + gr * excg[i]

}

185

where fcb_cng[] and excg[] are the multi-pulse excitation signal and the random excitation signal. gf and gr are their
corresponding gains.

11.5.7.1� Random sequence

Random sequence are generated by the following function and are used for generation of the multi-pulse and the random
excitation signals:

Random(short (*seed)

{

*seed = (short)((int)(*seed * 31821 + 13849));

return(*seed)

}

with an initial seed value of 21845 and commonly used for both excitations. This generator has a periodic cycle of 16 bits.
The seed is initialized with 21845 at the beginning of every non-active-voice period.

11.5.7.2� Generation of the Random excitation

The random excitation signal of each sufbrame is a Gaussian random sequence, which is generated as follows:

for(i=0;i<sbfrm_size;i++) excg[i] = Gauss(seed);

where

float Guass(short *seed){

tmp=0

for(i=0; i < 12; i++) temp += (float)Random(seed);

temp /= (2 * 32768);

return(temp);

} .

11.5.7.3� Generation of the multi-pulse excitation

The multi-pulse excitation signal of each subframe is generated by randomly selecting the positions and signs of pulses.
Multi-pulse structures of the MPEG-4 CELP with MPE_Configuration=24 and 31 are used for the sampling rate of 8 and 16
kbit/s, respectively, When the subframe size is 40 samples, positions and signs of 10 pulses located in a 40-sample vector
are generated. For subframe size of 80 samples, this generation is carried out twice to generate 20 pulses in an 80-sample
vector. Indices of the positions and signs, mp_pos_idx and mp_sign_idx, are generated in each subframe as follows:

 if(subframe size is 40 samples)

{

setRandomBits(&mp_pos_idx, 20, seed);

setRandomBits(&mp_sgn_idx, 10, seed);

}

if(subframe size is 80 samples)

186

{

setRandomBits(&mp_pos_idx_1st_half, 20, seed);

setRandomBits(&mp_sgn_idx_1st_half, 10, seed);

setRandomBits(&mp_pos_idx_2nd_half, 20, seed);

setRandomBits(&mp_sgn_idx_2nd_half, 10, seed);

}

where mp_pos_idx_1st_half and mp_sgn_idx_1st_half are indices of the positions and signs of the first half of the
subframe and mp_pos_idx_2nd_half and mp_sgn_idx_2nd_half are indices for the second half. A random index generator
function setRandomBits() is performed as follows:

void (long *l, int n, short *seed)

{

*l = 0xffff & Random(seed);

if(n > 16) *l |= (0xffff & Random(seed)) << 16;

if(n < 32) *l &= ((unsigned long)1 << n) - 1;

}.

11.5.7.4� Gain Calculation

Gains gf and gr are calculated from the smoothed RMS of the excitation, norm_sm as follows:

SIZESBFRMICNGFCBSMNORMGF
SIZESBFRM

I

_)(__
1_

0

2∑
−

=

⋅= α .

GR ! ! ! ! != − ⋅ + ⋅ − −[()]α α α3
2

3
2 2

1 2 21

where ���=α and

! GF FCB CNG I
I

SBFRM SIZE

1
2 2

0

1

=
=

−

∑ _ []
_

∑
−

=
=

1_

0

2
2][

SIZESBFRM

I

IEXCG!

∑
−

=
⋅⋅=

1_

0
3][][_

SIZESBFRM

I

IEXCGICNGFCBGF! .

11.5.8� LP Synthesis filter

The synthesis filter is identical to LP synthesis filter in the MPEG-4 CELP described in subclause 3.5.8 of ISO/IEC 14496-
3.

11.5.9� Memory update

Since the encoder and decoder need to be kept synchronized during non-active-voice period, the excitation generation is
performed on both encoder and decoder sides to update the corresponding buffers for the LP synthesis. The adaptive
codebook is not used and is initialized with zero during non-active-voice frames.

187

12� Extension of HVXC variable rate mode

12.1� Overview

This subclause describes the syntax and semantics of ER HVXC object including the operation of 4.0kbps variable rate
coding mode of HVXC. In version-1, variable bit rate mode based on 2kbps mode is already supported. Here the operation
of the variable bit rate mode of 4.0kbps maximum is described.

In the fixed bit-rate mode, we have 2 bit VUV decision that is:

VUV=3 : full voiced, VUV=2 : mixed voiced, VUV=1 : mixed voiced, VUV=0 : unvoiced.

When the operating mode is variable bit-rate mode, VUV=1 indicates "Background noise" status instead of "mixed voiced".
The current operating mode is defined by "HVXCconfig()" and decoder knows whether it’s variable or fixed rate mode and
can understand the meaning of VUV=1. In the "variable rate coding", bit assignment is varied depending on
Voiced/unvoiced decision and bit-rate saving is obtained mostly by reducing the bit assignment for Unvoiced speech
(VUV=0) segment. When VUV=0 is selected, then it is checked whether the segment is real "unvoiced speech" or
"background noise" segments. If it’s declared to be "background noise", then VUV is changed to 1 and bit assignment to
the frame is further reduced. During the "background noise " mode, only the mode bits or noise update frame is
transmitted according to the change of the background noise characteristics. Using this variable rate mode, average bit
rate is reduced to 56-85% of the fixed bit-rate mode depending on the source items.

12.2� Definitions

TBD

12.3� Syntax

This section describes the bitstream syntax and the bitstream semantics for ER HVXC object type including the extension
of HVXC variable rate mode.

An MPEG-4 Natural Audio Object ER HVXC object type is transmitted in one or two Elementary Streams: The base layer
stream and an optional enhancement layer stream.

The bitstream syntax is described in pseudo-C code.

12.3.1� Decoder configuration (ER HvxcSpecificConfig)

The decoder configuration information for ER HVXC object type is transmitted in the DecoderConfigDescriptor() of the
base layer and the optional enhancement layer Elementary Stream.

ER HVXC Base Layer -- Configuration

For ER HVXC object type in unscalable mode or as base layer in scalable mode the following
ErrorResilientHvxcSpecificConfig() is required:

ErrorResilientHvxcSpecificConfig() {
ErHVXCconfig();

}

ER HVXC Enhancement Layer -- Configuration

ER HVXC object type provides a 2 kbit/s base layer plus a 2 kbit/s enhancement layer scalable mode. In this scalable
mode the basic layer configuration must be as follows:

HVXCrateMode = 0 HVXC 2 kbps

188

For the enhancement layer, there is no ErrorResilientHvxcSpecificConfig() required:

ErrorResilientHvxcSpecificConfig() {
}

Table 12.3.1 - Syntax of ErHVXCconfig()

Syntax No. of bits Mnemonic
ErHVXCconfig()
{

HVXCvarMode 1 uimsbf
HVXCrateMode 2 uimsbf
extensionFlag 1 uimsbf
If(extensionFlag) {

var_ScalableFlag 1 uimsbf
}

}

Table 12.3.2 - HVXCvarMode

HVXCvarMode Description
0 HVXC fixed bit rate
1 HVXC variable bit rate

Table 12.3.3 - HVXCrateMode

HVXCrateMode HVXCrate Description
0 2000 HVXC 2 kbit/s
1 4000 HVXC 4 kbit/s
2 3700 UimsbfHVXC 3.7 kbit/s
3 (reserved)

Table 12.3.4 – var ScalableFlag

Var ScalableFlag Description
0 HVXC variable rate non-scalable mode
1 HVXC variable rate scalable mode

Table 12.3.5 – HVXC constants

NUM_SUBF1 NUM_SUBF2
2 4

12.3.2� Bitstream frame (alPduPayload)

The dynamic data for ER HVXC object type is transmitted as AL-PDU payload in the base layer and the optional
enhancement layer Elementary Stream.

ER HVXC Base Layer -- Access Unit payload

alPduPayload {
ErHVXCframe();

}

189

ER HVXC Enhancement Layer -- Access Unit payload

To parse and decode the ER HVXC enhancement layer, information decoded from the ER HVXC base layer is required.

alPduPayload {
ErHVXCenhaFrame();

}

Table 12.3.6 - Syntax of ErHVXCframe()

Syntax No. of bits Mnemonic
ErHVXCframe()
{

If(HVXCvarMode == 0) {
ErHVXCfixframe(HVXCrate)

} else {
ErHVXCvarframe(HVXCrate)

}
}

Table 12.3.7 - Syntax of ErHVXCenhaframe

Syntax No. of bits Mnemonic
ErHVXCenhaframe()
{

If(HVXCvarMode == 0) {
ErHVXCenh_fixframe()

} else {
ErHVXCenh_varframe()

}
}

The syntax of the ErHVXCfixframe(), ErHVXCvarframe(), ErHVXCenh_fixframe(), and ErHVXCenh_varframe() are
described in the subcluase 10.3.

12.4� Decoding process

This subclause describes the decoding operation of 4.0kbps variable bit-rate mode.

idVUV is a parameter that has the result of V/UV decision and defined as;

 idVUV

0 Unvoiced speech

1 Background noise interval

2 Voiced speech 1

3 Voiced speech 2

=










To indicate whether or not the frame marked “idVUV=1” is noise update frame, a parameter “UpdateFlag” is introduced.
UpdateFlag is used only when idVUV=1.

190



= frame update noise 1

frame update noise not 0UpdateFlag

Variable rate encoding/decoding

Using the background noise detection method described above, variable rate coding is carried out based on fixed bit rate
4kbps HVXC.

Mode(idVUV) Back Ground Noise(1) UV(0) V(2,3)

UpdateFlag=0 UpdateFlag=1

V/UV

UpdateFlag

LSP

Excitation

2bit/20msec
1bit/20msec
0bit/20msec

2bit/20msec

1bit/20msec

18bit/20msec

4bit/20msec

(gain only)

2bit/20msec

0bit/20msec

18bit/20msec

20bit/20msec

2bit/20msec

0bit/20msec

26bit/20msec

52bit/20msec

Total 3bit/20msec

0.15kbps

25bit/20msec

1.25kbps

40bit/20msec

2.0kbps

80bit/20msec

4.0kbps

If UpdateFlag is 0, the frame is not noise update frame, and if UpdateFlag is 1, the frame is noise update frame. The first
frame of the “Background noise” mode is always classified as the noise update frame. In addition, if the gain or spectral
envelope of the background noise frame is changed, noise update frame is inserted.

At the noise update frame, the average of LSP parameters over the last 3 frames is computed and coded as LSP indices.
In the same manner, the average of Celp gain over the last 4 frames(8 subframes) is computed and coded as Celp gain
index.

If the current frame or the previous frame is "Background noise" mode, differential mode in LSP quantization is inhibited in
the encoder, because LSP parameters are not sent during "Background noise" mode and inter frame coding is not
possible.

In the decoder, two sets of LSP parameters of previously transmitted ones are holded.

prevLSP1: transmitted LSP parameters as noise update frame

prevLSP2: transmitted LSP parameters before prev LSP1

When the "Background noise" mode is selected, new LSP parameters are sent only when the frame is marked as
UpdateFlag=1 LSP parameters for each frame are generated by the interpolation between prevLSP1 and prevLSP2 using
the following equation.

10..1)(2)1()(1)(=⋅−+⋅= IIPREV,SPRATIOIPREV,SPRATIOIQ,SP L (1)

where

).46,"'.
RNDBGN)NTVAL

RATIO
_2

1)(2

⋅
++⋅= (2)

In this equation, bgnIntval is a counter which counts the number of consecutive background noise frames, and is reset to 0
at the receipt of background noise update frame. BGN_INTVL(=12) is a constant, and rnd is a randomly generated integer
value between –3 and 3. If counter bgnIntval reaches BGN_INTVL, bgnIntvl is set to BGN_INTVL-1, and if the ratio from
the equation (2) is less than 0 or more than 1, the value of rnd is set to 0 and ratio is recomputed.

191

During the period of "Background noise" mode, the decoded signals are generated in the same manner as UV frames
except that the Gain index transmitted in the noise update frame is used for all the subframes, and the Shape index is
randomly generated.

LSP index

V/UV/BGN

UpdateFlag

LSP Interpolation for UVInverse VQ of LSP Interpolation for BGN

Figure 2 Additional Diagram for Decoder

